Научная электронная библиотека. Этапы проведения системного анализа Характеристика основных этапов системного анализа

27.05.2021

План

Введение……………………………………………………………………....…...3

1. Методологические принципы системного анализа….……………….…….5

2. Этапы (процедуры) системного анализа………………………….………...7

Заключение…………………………………………………………………..….16

Список литературы……………………………………………………….…….18


Введение

Дисциплина, именуемая «системный анализ», родилась в силу возникшей необходимости вести исследования междисциплинарного характера. Создание сложных технических систем, проектирование сложных народнохозяйственных комплексов и управление ими, анализ экологических ситуаций и многие другие направления инженерной, научной и хозяйственной деятельности требовали организации исследований, которые носили бы нетрадиционный характер. Они требовали объединение усилий специалистов разных научных профилей, унификации и согласования информации, получаемой в результате исследований конкретного характера. Успешное развитие подобных системных исследований во многом обязано тем возможностям обработки информации, использованию математических методов, которые появились вместе с электронной вычислительной техникой и дали одновременно не только инструмент, но и язык высокой степени универсальности. Сам термин «системный анализ» подразумевает совокупность методов, основанных на использовании СВТ и ориентированных на исследование сложных систем - технических, экономических, экологических и т. д. В результате этих исследований должно возникать не просто новое знание. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития региона, параметров конструкции и т. д. Иногда говорят, что системный анализ – это методика улучшающего вмешательства в проблемную ситуацию. Таким образом, системный анализ - это дисциплина, занимающаяся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы. Поэтому истоки системного анализа, его методических концепций лежат в тех дисциплинах, которые занимаются проблемами принятия решений, теории исследования операций и общей теории управления.

Становление новой дисциплины следует датировать концом XIX и началом XX века, когда появились первые работы по теории регулирования, когда в экономике начали впервые говорить об оптимальных решениях, то есть когда появились первые представления о функции цели (полезности). Развитие теории определялось, с одной стороны, развитием математического аппарата, появлением приемов формализации, а с другой - новыми задачами, возникавшими в промышленности, военном деле, экономике. Особенно бурное развитие теория системного анализа получила после пятидесятых годов, когда на основе теории эффективности, теории игр, теории массового обслуживания появилась синтетическая дисциплина - «исследование операций». Она затем постепенно переросла в системный анализ, который явился синтезом исследования операций и теории управления.

Современный системный анализ имеет обширный инструментарий, включающий в себя развитый математический аппарат и современные вычислительные системы.

В общем виде под системным анализом понимают всестороннее, систематизированное, т.е. построенное на основе определенного набора правил, исследование сложного объекта в целом, вместе со всей совокупностью его сложных внешних и внутренних связей, проводимое для выяснения возможностей повышения эффективности функционирования этого объекта путем выбора определенной альтернативы.

На современном уровне развития системный анализ не является научным методом в строгом смысле, поскольку для ряда его этапов формальный аппарат пока не существует и эти этапы выполняются на содержательном уровне на основе логики, здравого смысла, опыта и интуиции. Однако научная мысль интенсивно работает в данном направлении.

Большинство авторов предлагают свое видение методологии системного анализа, как правило, несущее на себе заметный отпечаток той предметной сферы, в которой они работают. В основном в состав этой общей теории включают принципы системного анализа и общую последовательность этапов системного анализа; методология и методы рассматриваются обособленно. Так, например, Н.Д. Дроздов полагает, что методология системного анализа включает определение используемых понятий, общую характеристику проблемы системных исследований, системный подход, этапы системного анализа. Представляется, что в качестве основного процедурного элемента можно рассматривать этапы (процедуры) системного анализа, базирующиеся на целях и принципах системного анализа.


1. Методологические принципы системного анализа

Целью анализа системы управления является:

· детальное изучение системы управления для более эффективного использования и принятия решения по ее дальнейшему совершенствованию или замене;

· исследование альтернативных вариантов вновь создаваемой системы управления с целью выбора наилучшего варианта.

Опыт исследования объектов различного состава, содержания и области применения (общественных, физических, технических, эрратических, биологических, мыслительных конструкций и т.д.) позволяет сформулировать три основных принципа системного подхода, которые можно положить в основу исследования сложных систем управления:

принцип физичности;

принцип моделируемости;

принцип целенаправленности.

Игнатьева А.В. и Максимцов М.М. выделяют такие принципы системного анализа:

целостность;

иерархичность строения;

структуризация;

Н.Д. Дроздов полагает, что принципами системного анализа являются:

1) Принцип единства: совместное рассмотрение системы как единого целого и как совокупности частей (элементов).

2) Принцип связности: рассмотрение любой части системы совместно с её связями с другими частями и с окружающей средой.

3) Принцип развития: учёт изменяемости системы, её способности к развитию, замене частей, накапливанию информации, при этом учитывается и динамика внешней среды, изменение взаимодействия системы с внешней средой.

Следующие принципы системного подхода определяют рациональный, целенаправленный подход к рассмотрению структуры и функционирования системы.

4) Принцип функциональности: совместное рассмотрение структуры системы и функций с приоритетом функций над структурой - изменение функций влечет изменение структуры.

5) Принцип децентрализации: сочетание децентрализации и централизации.

6) Принцип модульного построения: выделение модулей и рассмотрение системы как совокупности модулей.

7) Принцип иерархии. Иерархия свойственна всем сложным системам.

8) Принцип свертки информации: информация свертывается, укрупняется при движении по ступеням иерархии снизу вверх.

9) Принцип неопределенности.

10) Принцип организованности: решения, выводы, действия должны соответствовать степени детализации системы, ее определенности, организованности.

Указанный список мнений исследователей по поводу принципов системного анализа можно было бы продолжить, поскольку в литературе эти принципы разнятся практически у всех исследователей.

2. Этапы системного анализа

Укрупнено системный анализ состоит из следующих этапов: постановки задачи; структуризации системы и ее проблем; построения и исследования модели с последующей выработкой рекомендаций по совершенствованию системы.

Разные исследователи по-разному подходят к определению основных этапов системного исследования. К примеру, Мыльник В.В., Волочиенко В.А., Титаренко Б.П выделяют такие процедуры: определение конфигуратора; определение проблемы и проблематики; выявление целей; формирование критериев; генерирование альтернатив; построение и использование моделей; оптимизация; декомпозиция; агрегирование.

В.И. Мухин выделяет такие этапы:

определение объекта анализа;

структурирование системы;

определение функциональных особенностей системы управления;

исследование информационных характеристик системы;

определение количественных и качественных показателей системы управления;

оценивание и оценка эффективности системы управления;

обобщение и оформление результатов анализа.

Как видно, самые главные этапы у всех исследователей повторяются (постановка задачи – определение проблемы плюс выявление целей; моделирование – построение моделей; структуризация – структурирование системы и т.д.).

1.Постановка задачи. Этот этап работы является наиболее важным, т.к. от него зависит весь ход проведения исследований. Как первоначальный этап системного анализа, постановка задачи отличается от постановки задачи в математическом смысле как формального способа записи ее существа. В этом относительно узком смысле постановка задачи рассматривается позднее для конкретных задач, решаемых системой или ее элементами в процессе функционирования. На начальном этапе системного анализа постановку задачи рассматривают в широком смысле.

Применительно к системам управления прежде всего следует выяснить само назначение проводимого исследования, ибо от этого существенно зависит направление и содержание последующих этапов. Важно определить, что послужило причиной, вызвавшей решение о начале данного исследования.

Вызвано ли это решение недовольством, неудовлетворенностью деятельностью существующей системы или ее подсистем, чем вызвана эта неудовлетворенность, кто ее выражает и как она сформулирована?

Предполагаются ли радикальные решения, связанные с коренной реконструкцией, принципиальным видоизменением действующей системы, или хотелось бы улучшить ее работу на базе существующих возможностей?

Почему изменения представляются необходимыми?

Что хотелось бы получить в результате этих изменений?

Что мешает изменить систему в нужном направлении без проведения специальных исследований?

Как оценить эффективность изменений, если они будут сделаны? Ответы на подобные вопросы легко могут быть получены у специалистов рассматриваемой и вышестоящей систем. Их многолетний опыт, детальное знание той системы, в которой они работают, позволяют считать, что никто лучше их не знает, какие они испытывают трудности, какие ограничения им мешают, чего они хотят добиться.

Однако почти всегда оказывается, что задачи формулируются этими специалистами либо в весьма общих, трудно поддающихся конкретизации выражениях, либо, наоборот, ставятся узкие конкретные задачи, не охватывающие проблему в целом. Это объясняется не тем, что они недостаточно глубоко знают свою систему или у них отсутствуют специальные знания и навыки в области системного анализа. Психологически человек всегда убежден в правильности своих решений, даже когда другим очевидна их ошибочность, - иначе он бы такое решение просто не принимал. Ему кажется, что он учел все влияющие на решение факторы, предусмотрел последствия, взвесил все обстоятельства.

Принимаемые в сложных ситуациях решения, как правило, весьма далеки от оптимальных. Именно поэтому формулировки задач специалистами, работающими в исследуемой системе, в большинстве случаев односторонни, выхватывают какой-либо один аспект деятельности системы, не учитывая многообразия и взаимосвязи различных факторов в системе и ее внешней среде. Именно поэтому иногда бывает, что сформулированные этими специалистами задачи в результате уже первого этапа системного анализа меняются коренным образом.

Первый этап - этап постановки задачи - весьма важен для последующей работы, от него существенно зависит, какие будут получены результаты. В то же время этот этап практически не поддается формализации. Успех определяется искусством и опытом специалиста по системному анализу, глубиной понимания им исследуемой системы, умением установить тесный контакт со специалистами, работающими в исследуемой системе, проведением всех исследований совместно. Наибольший эффект дает создание единой группы, в которую входят эти специалисты.

2. Структуризация - второй этап системного анализа. Прежде всего надо локализовать границы проблемы и системы и определить их внешнюю среду, для чего необходимо определить набор всех элементов, в той или иной степени связанных с поставленной на предыдущем этапе задачей, и разделить их на два класса - 1) исследуемую систему и 2) ее внешнюю среду. Такое деление существенно зависит от поставленной задачи -при ее изменении меняются границы проблемы и системы, внешняя среда, а иногда первоначальный набор элементов.

Критерием разделения различных проблем на классы, как правило, является степень возможной глубины их познания. Исходя из этого в наиболее общем виде все проблемы подразделяются на три класса: «хорошо структурированные» (well-structured), «неструктурированные» (unstructured) и «слабоструктурированные» (ill-structured):

к «хорошо структурированным» относятся такие проблемы, в которых существенные зависимости ясно выражены и могут быть представлены в числах или символах. Этот класс проблем называют также «количественно выраженными», и для решения проблем этого класса широко используется методология «исследований операций»;

«неструктурированными» являются проблемы, которые выражены главным образом в качественных признаках и характеристиках и не поддаются количественному описанию и числовым оценкам. Исследование этих «качественно выраженных» проблем поддается только эвристическим методам анализа. Здесь отсутствует возможность применения логически упорядоченных процедур отыскания решений; > к классу «слабоструктурированных» относятся проблемы, которые содержат, как качественные, так и количественные элементы. Причем неопределенные, не поддающиеся количественному анализу зависимости, признаки и характеристики имеют тенденцию доминировать в этих «смешанных» проблемах. К этому классу проблем относится большинство наиболее сложных задач экономического, технического, политического, военно-стратегического характера. Решение проблем, имеющих «слабоструктурированный характер», и является основной задачей системного анализа.

Для существующих систем обычно определены их границы, и задача структуризации сводится к исследованию соответствия принятых границ поставленной задаче. Дальнейшая структуризация проводится раздельно для внешней среды и самой системы.

Во внешней среде локализуют в виде подсистем элементы, образующие вертикаль исследуемой системы: вышестоящие, подчиненные ей подсистемы, а также те подсистемы одного с ней уровня, которые подчиняются той же подсистеме (n + 1)-го уровня, что и рассматриваемая. Оставшуюся часть внешней среды рассматривают либо в совокупности, либо проводят дальнейшую структуризацию в зависимости от характера поставленной задачи. В первом случае выделяют во внешней среде ряд систем по принципу тесноты и независимости связей с исследуемой.

Структуризация самой системы заключается в разбиении ее на подсистемы в соответствии с поставленной целью исследования. Завершается этап структуризации определением всех существенных связей между ней и системами, выделенными во внешней среде. Тем самым для каждой из выделенных в процессе структуризации систем определяют ее входы и выходы.

3. Построение модели, или моделирование, - третий этап системного анализа, который используют для изучения и анализа любых сложных систем, процессов и объектов. Модель - это приближенное, упрощенное представление процесса или объекта.

Процесс познания состоит в том, что мы создаем для себя некоторое представление об изучаемом объекте или явлении, помогающее лучше понять его функционирование и устройство, его характеристики. Такое представление, выраженное в той или иной форме, будем называть моделью. Чем детальнее и точнее познан объект, чем больше сведений о нем отражено в модели, тем она ближе к действительности, тем выше степень соответствия модели оригиналу, тем больше модель адекватна оригиналу (от лат. adaequatus - приравненный, тождественный).

Модели значительно облегчают понимание системы, позволяют проводить исследования в абстрактном плане, прогнозировать поведение системы в интересующих нас условиях, упрощать задачи, анализировать и синтезировать совершенно различные системы одними методами.

Основная задача и в то же время преимущество модели - выделение частных, но наиболее важных факторов реальной системы, которые подлежат изучению в данном конкретном исследовании. Эти факторы должны быть отражены в модели с наибольшей полнотой и детализацией, их характеристики в модели должны совпадать с реальными с точностью, определяемой требованиями данного исследования.

Остальные, несущественные факторы могут быть либо отражены с меньшей точностью, либо вовсе отсутствовать в модели. Следует подчеркнуть, что исключение несущественных факторов является немаловажным преимуществом модели. Их наличие в реальном объекте мешает исследователю, затрудняет понимание основных закономерностей, создает некоторый «шум», на фоне которого труднее выявить необходимые закономерности.

Разделение факторов на существенные и несущественные зависит от характера конкретного исследования. При изменении направленности исследования меняются требования к моделям и, следовательно, изменяется сама модель. Поэтому каждый реальный процесс или объект может быть представлен самыми различными моделями, зачастую совершенно непохожими одна на другую. Единственным общим свойством у них может быть лишь то, что они, каждая по-своему, отражают один и тот же объект.

С помощью моделей можно получить характеристики системы или отдельных ее частей значительно проще, быстрее и дешевле, чем при исследовании реальной системы. Естественно, это влечет за собой снижение точности, ибо мы получаем фактически не истинные значения характеристик, а лишь их оценки, приближенные значения. Степень точности определяется адекватностью модели и может быть повышена при необходимости за счет усложнения модели.

Преимущества модели: возможность сравнительно простыми средствами изменять ее параметры, вводить некоторые воздействия с целью изучения реакции системы, которые в реальных условиях получить значительно труднее (например, иногда невозможно изучить поведение системы в аварийных ситуациях или других особых условиях).

Чтобы изучить модель и экспериментировать с ней, она должна быть достаточно простой. Однако чем проще модель, тем меньше, как правило, она адекватна оригиналу. Само определение модели указывает на отсутствие полного совпадения всех характеристик модели и оригинала.

Таким образом, при моделировании системы мы всегда вынуждены идти на компромисс между простотой модели и обеспечиваемой ею точностью. Модель считают адекватной, если она обеспечивает точность, достаточную для данного исследования. Адекватность модели обычно проверяют экспериментом, сравнивая реакцию выходов на определенные значения входов у модели и у реального объекта. При этом следует помнить, что сама модель, с которой проводится эксперимент, должна соответствовать принятым условиям моделирования. Другими словами, модель, используемая в эксперименте, должна быть такой же, с которой проводятся дальнейшие исследования.

Эксперимент может быть пассивным и активным.

Пассивный эксперимент заключается в том, что исследователь наблюдает за реальным объектом, не вмешиваясь в его функционирование. На входы модели подают значения параметров, соответствующие значениям параметров реального объекта, затем сравнивают значения параметров соответствующих выходов модели и объекта.

Состояние реального объекта, его входов и выходов может отличаться от условий, которые хотел бы иметь исследователь. При пассивном наблюдении желаемые состояния объекта могут наступать редко или вовсе не встретиться за время наблюдения. Поэтому пассивный эксперимент осуществляют лишь в тех случаях, когда по каким-либо причинам вмешательство в функционирование реального объекта нежелательно, недопустимо или просто невозможно.

Одна из разновидностей пассивного эксперимента, имеющая самостоятельное значение для проверки адекватности модели, - ретроспективная проверка (ретроспекция - от лат. retro - назад и spectio - смотрю; обращение к прошлому, обзор прошедших событий). Она заключается в том, что из ряда наблюдений реального объекта за прошлые периоды выбирают интересующие исследователя состояния и для них выполняют процедуры, описанные выше. Это позволяет существенно сократить срок проведения экспериментальной проверки.

Активный эксперимент заключается в непосредственном воздействии исследователя на входы реального объекта и наблюдении за реакцией последнего. Соответствующие значения параметров задают на входы модели, что позволяет сравнивать реакцию ее выходов с реакцией реального объекта. Преимущество активного эксперимента состоит в том, что, проводя эксперимент, исследователь имеет возможность проверять адекватность модели в интересующих его режимах, варьируя их по своему усмотрению. В то же время затраты на активный эксперимент значительно больше, и он может привести к нежелательным потерям в реальной системе.

Естественно, что как активный, так и пассивный эксперименты проводятся не только для проверки адекватности моделей, но и для любых других целей исследования реальных объектов.

Из определения модели следует, что она является некоторым представлением объекта, его описанием. Поэтому различные модели отличаются друг от друга используемым для такого описания языком (начиная с естественного до высокоформализованного языка математических абстракций). Выбор языка определяет вид модели. При выборе языка учитывают требования к адекватности модели, обеспечиваемой ею точности результатов, а также удобство последующего ее анализа с помощью соответствующего аппарата.

4. Завершающим этапом системного анализа является исследование модели. Основное назначение этого этапа - выяснение поведения моделируемого объекта или процесса в различных условиях, при разных состояниях внешней среды и самого объекта. Для этого варьируют параметры модели, характеризующие состояние объекта, и задают на ее входах различные значения параметров, соответствующие воздействиям внешней среды.

Полученные результаты позволяют прогнозировать поведение исследуемого объекта в соответствующих условиях, а сами результаты анализируют на соответствие предполагаемой траектории функционирования системы управления принятым целям и критериям. На основе анализа видоизменяют либо параметры модели, либо управляющие воздействия, либо и то и другое и повторяют исследование, пока не будут получены удовлетворительные результаты.

Такой метод «проб и ошибок» применяют тогда, когда не найден способ оптимизации состояния системы и выбора управляющих воздействий.

Системный анализ это исследование, цель которого - помочь руководителю, принимающему решение, в выборе курса действий путем систематического изучения его действительных целей, количественного сравнения (там, где возможно) затрат, эффективности и риска, которые связаны с каждой из альтернатив политики или стратегии достижения целей, а также путем формулирования дополнительных альтернатив, если рассматриваемые недостаточны.


Заключение

Принцип системности можно воспринимать в качестве философского принципа, выполняющего как мировоззренческие, так и методологические функции.

Принцип системности предполагает представление об объекте любой природы как о совокупности элементов, находящихся в определенном взаимодействии между собой и с окружающим миром, а также понимание системной природы знаний.

Принцип системности - это и проявление имеющего исторические традиции системообразующего начала, стремления представить знания в виде некоторой непротиворечивой системы.

Непосредственно из принципа системности вытекает системный подход, являющейся общей методологией системных исследований, которая может быть, в свою очередь, представлена в виде набора методологических подходов (принципов) к исследованию системы.

Сущность системного подхода сводится к следующему:

формулированию целей и выяснению их иерархии до начала какой-либо деятельности, связанной с управлением и, в частности, с принятием решений;

получению максимального эффекта в смысле достижения поставленных целей при минимальных затратах путем сравнительного анализа альтернативных путей и методов достижения целей и осуществления соответствующего их выбора;

количественной оценке (квантификации) целей, методов и средств их достижения, основанной не на частных критериях, а на широкой и всесторонней оценке всех возможных и планируемых результатов деятельности.

Общие положения системного подхода представляются (конкретизируются) в виде перечня принципов (подходов), применяемых при исследовании систем.

По поводу принципов системного анализа мнения исследователей существенно разнятся. Однако как общеметодологический принцип в любом случае выступает принцип системности.

Этапы системного анализа укрупненно можно представить следующим образом: постановки задачи; структуризации системы и ее проблем; построения и исследования модели с последующей выработкой рекомендаций по совершенствованию системы.

Список литературы

1. Анфилатов В.С. и др. Системный анализ в управлении. М., 2002.

2. Архипова Н.И. и др. Исследование систем управления. М., 2002.

3. Дрогобыцкий И.Н. Системный анализ в экономике. М., 2007.

4. Дроздов Н.Д. Основы системного анализа. М., 2000.

5. Игнатьева А.В., Максимцов М.М. Исследование систем управления. М., 2002.

6. Мухин В.И. Исследование систем управления. М., 2002.

7. Мыльник В.В., Волочиенко В.А., Титаренко Б.П. Системы управления. М., 2002.

8. Попов В.Н. Системный анализ в менеджменте. М., 2007.

9. Тимченко Т.Н. Системный анализ в управлении. М., 2007.


Мыльник В.В., Волочиенко В.А., Титаренко Б.П. Системы управления. М., 2002. С. 151.

Игнатьева А.В., Максимцов М.М. Исследование систем управления. М., 2002. С. 26.

Архипова Н.И. и др. Исследование систем управления. М., 2002. С. 87.

Вследствие того же разнообразия задач, решаемых методами системного анализа, и широкой области их применения не существует единого перечня и последовательности этапов исследования, пригодных для всех случаев. В зависимости от класса решаемых проблем, от стадии исследования и сферы их приложения используются различные по содержанию и последовательности этапы исследований.

Но существует некоторый перечень этапов системного анализа, состав и последовательность применения которых почти не зависит от решаемой задачи. Они чаще других применяются на различных этапах системного анализа.

1 этап . Анализ проблемы : Задачи этапа: правильное и точное формулирование проблемы, анализ логической структуры и развития проблемы во времени, определение внешних связей проблемы и оценка принципиальной ее разрешимости.

2 этап . Определение системы, анализ ее структуры. Задачи этапа: выявление специфики задачи; определение позиций наблюдателя и объекта исследования; выделение элементов системы; определение границ декомпозиции системы; определение подсистем и сферы их функционирования.

Кроме того, в зависимости от типа системы, решаются задачи: определение уровня иерархии (в больших системах); определение и спецификация процессов управления и каналов информации (в кибернетических системах) и т.д.

Произвол в выделении подсистем и реализуемых в них процессов обрекает системное исследование на неудачу. Если в технических системах, структура подсистем ясно просматривается, то в системах экономического управления все структурные соотношения весьма сильно скрыты за отношениями административной подчиненности.

При решении текущих задач экономического управления рутинные процедуры заслоняют цели и процессы развития. Выявление целей и процессов развития и отделение их от рутинных требуют от исследователя не только строгости логического мышления, но и умения найти необходимые контакты с работниками управления.

3 этап . Формулирование общей цели и критерия системы , где задачами являются: формулирование целей верхнего уровня; формулирование общих целей исследуемой системы, увязанных с целями системы более верхнего уровня; определение критерия системы; декомпозиция целей по подсистемам; формулирование критериев подсистем и композиция общего критерия системы из критериев подсистем; выявление потребностей в ресурсах и т.д.

В системном анализе ряд социальных, политических, этических и других факторов не поддаются количественной формализации, но они должны учитываться. Для учета этих факторов прибегают к субъективным оценкам экспертов.

4 этап . Выявление ресурсов и процессов, анализ факторов будущего развития, композиция целей . Задачи этапа: оценка существующих технологий и мощностей; оценка современного состояния ресурсов; оценка возможностей взаимодействия с другими системами в части обеспечения ресурсами; анализ ресурсов будущего; комплексный анализ взаимодействия факторов будущего развития.

Т.к. системный анализ имеет дело с перспективой развития, необходимо учесть возможные изменения в перспективе технологий, мощностей, возможные открытия и изобретения, возможную трансформацию целей и критериев.

5 этап . Отбор целей и вариантов решения , где задачами являются: анализ целей на совместимость; проверка целей на полноту и отсечение избыточных целей; планирование альтернативных вариантов достижения целей; оценка и сравнение вариантов по выбранным критериям; совмещение комплексов взаимосвязанных вариантов.

Одним из центральных моментов данного этапа является анализ целей на полноту (все ли цели учтены?) и усечение целей – отсечение малозначащих целей и целей, не имеющих средств для достижения тех, а также отбор конкретных вариантов достижения взаимосвязанного комплекса важнейших целей.

Проблемы, решаемые методами системного анализа, чаще всего возникают не на пустом месте, а в реально существующих системах. Задачей системного анализа в связи с этим является не создание новой системы или органа управления, а усовершенствование работы существующих, ориентация их на решение новой проблемы. В этих случаях возникает необходимость в диагностическом анализе элементов системы, направленном на выявление их возможностей, недостатков, переработке информации и в принятии решений с целью устранения этих недостатков и модернизации системы.

6 этап . Выбор метода решения . Первоначально рассматриваются известные методы решения задачи; если эти методы оказываются неадекватными поставленной задаче, то отыскиваются или разрабатываются новые методы решения, или пересматривается сама задача.

С точки зрениятехники решения все методы можно разделить на 3 класса:

- стандартные : методы, в основе которых лежит использование стандартных или заданных инструкциями приемов и процедур; основу этих методов составляет процедурная сторона процесса;

- аналитические : методы решения, в основе которых лежит использование математических моделей; используются для решения широкого класса структурированных проблем; однако применение этих методов затрудняется из-за невозможности формализации ряда факторов, влияющих на решение задачи; наличия неопределенностей в условиях функционирования системы; наличия многокритериальностей; наличия противоречия интересов лиц, участвующих в принятии решений;



- имитационные : методы, в основе которых лежит искусственное воспроизведение исследуемых процессов с применением диалога ЭВМ-человек; применяется в случаях, когда исследуемую задачу нельзя целиком решить одним методом; процесс решения разбивается на этапы, результаты которых анализируются и корректируются человеком, и запускаются в качестве исходного плана следующего этапа.

В зависимостиот принципов отыскания решения методы делятся на 2 класса:

- методы последовательных улучшений решений: задача решается для первоначального набора условий; проводится анализ возможности достижения оптимального решения; выбирается фактор, в наибольшей степени препятствующий развитию системы, т.е. находится проблемное, критическое место в системе, находятся пути решения данной проблемы, затем выбирается другое критическое место и т.д.; Недостаток метода заключается в том, что не учитываются взаимозависимости факторов;

- методы поиска идеала : первоначально рассматриваются предельные (идеальные) уровни по каждому фактору, обеспечивающие наилучший вариант системы вне зависимости от их реализуемости, т.е. разрабатывается идеальное решение; затем по каждому фактору устанавливается достижимый предел с учетом реальных возможностей, т.е. начинается отступление от идеального решения; процесс идет до тех пор, пока не будет найдено такое распределение усилий, при котором отступление от идеала будет минимальным или не будут израсходованы все резервы улучшения данного фактора.

Выбор метода неразрывно связан с постановкой задачи и с условиями принятия решений. При решении задач в условиях определенности могут применяться классические методы оптимизации или методы математического программирования. При решении задач в условиях риска – методы теории вероятностей и математической статистики; в условиях неопределенностей – методы теории игр.

7 этап . Построение комплексной программы развития . Задачи этапа: формулирование мероприятий, проектов и программ; определение очередностей целей и мероприятий по их достижению; разработка комплексных и плановых мероприятий по ресурсам и времени; распределение мероприятий по ответственным организациям и исполнителям.

Результаты предыдущих этапов системного анализа, полученные в рамках системных и математических понятий, нужно перевести на язык технических, социальных, экономических и т.д. категорий, в которых рассматривается исследуемая система. Затем создаются комплексные программы по реализации этих решений с распределением по времени и ответственным исполнителям.

8 этап. Принятие решения : при анализе слабоструктурированных проблем количество вариантов решения может быть неограниченным, и может оказаться, что все возможные альтернативы не могут быть рассмотрены, а оптимальное решение может оказаться недостижимым. В этих случаях выбирается несколько равноценных альтернатив, среди которых отыскивается по возможности лучшее решение и получаются квазиоптимальные решения, т.е. приходим к некоему компромиссу; такая же ситуация возникает в задачах, связанных с многокритериальностью и неопределенностями разного рода.

На этом процесс принятия решения завершается и начинается процесс их реализации, качественно отличающийся от первого тем, что в первом случае основным предметом труда является информация, во втором – материальные, энергетические и финансовые ресурсы.

Рассмотренные этапы являются наиболее распространенными и часто применяемыми этапами системного анализа. Реализация всех этапов в полном объеме чрезвычайно затруднена, поэтому на практике применяется часть этапов, последовательность их применения, глубина анализа, объем задач на каждом этапе зависят от конкретной решаемой задачи, от цели исследования и характера исследуемой проблемы.

Необходимо иметь в виду, что объекты исследования, условия их функционирования, цели и задачи системы в процессе их развития могут изменяться (и в процессе жизненного цикла системы), поэтому системный анализ является итеративным процессом, то есть, часть этапов или весь цикл анализа может циклически повторяться.

Формулирование проблемы. Для традиционных наук постановка задачи является отправным этапом работы. Для исследователей систем - это результат промежуточный, которому предшествует большая аналитическая работа.

Например, в последнее время в организациях остро стоит проблема невыплаты заработной платы. Но невыплата заработной платы - не проблема, а следствие, как правило, некоторой совокупности проблем, которая в каждой организации своя.

Начальная формулировка - лишь приблизительный намек на то, какой в действительности должна быть формулировка проблемы. Выявлением проблемного поля и его обработкой занимаются, как правило, консультанты по управлению и организационному развитию.

Далее выявляются цели, являющиеся антиподами проблем. Проблемы - это то, что не нравится, а цели - то, что мы хотим. В итоге проблемы приводятся к таком виду, когда они становятся задачами выбора подходящих средств, необходимых для достижения заданных целей.

При формулировании целей следует придерживаться следующих правил:

  • включать в список цели, противоположные заявленным;
  • выявлять не только желаемые, но и нежелаемые по последствиям цели;
  • допускать существование вообще всяких целей.

Изменение целей во времени может быть как по форме, так

Формирование критериев. Критерии - это количественные модели качественных целей; подобие цели, ее аппроксимация, модель.

Например, студент ставит себе цель: успешно сдать зимнюю сессию. Критерием в этом случае может быть такая количественная модель - получить две пятерки и две четверки.

Решение может состоять не только в поиске более адекватного варианта (может случиться так, что его и не существует), но и в использовании нескольких критериев, описывающих одну и ту же цель с разных позиций и тем самым дополняющих друг друга.

Например, цель - улучшить уборку мусора в городе. Критерии оценки могут быть следующие.

Первая группа критериев".

  • расходы по уборке мусора в расчете на одну квартиру;
  • количество мусора в расчете на человека в день;
  • общий вес вывозимого мусора.

Вторая группа критериев".

  • процент жилых кварталов с низким уровнем заболеваемости населения;
  • снижение числа пожаров;
  • сокращение количества жалоб жителей.

Генерирование альтернатив и выбор варианта решения проблем.

При наличии целей и критериев их достижения встают вопросы,

что оценивать этими критериями, из чего выбирать. Многие проблемы, требующие решения, не поддаются количественной оценке, поэтому используются экспертные технологии. Словом, нужны эксперты и варианты решений. Структурная схема экспертных методов выработки решений приведена на рис. 5.2.

(оценка сравнительной предпочтительности)

Генерирование альтернатив

(поиск нестандартных решений)

Экспертная классификация

(определение принадлежности элементов исследуемого множества каким-либо классам)

Экспертный прогноз

(оценка тенденций ожидаемого развития) Индивидуальные

_/экспертные/_

Коллективные «Мозговой атаки»

(последовательный поиск нетривиального решения, в котором запрещена критика идей)

Дельфи

(анонимное согласование индивидуальных мнений, проводимое в несколько туров)

Сценариев

(определение тенденций возможного развития: выдвижение гипотез)

Суда

(обсуждение альтернатив: сторонниками, противниками и «судьями»)

Комиссий

(регулярная выработка согласованных мнений на собраниях)

Рис. 5.2. Структурная схема экспертных методов выработки решений

Рассмотрим подробнее методы активизации творческого мышления.

Метод «мозговой атаки». Суть метода: каждому участнику группы предоставляется право высказывать самые различные идеи по поводу вариантов решения проблемы вне зависимости от их обоснованности, осуществимости и логичности. Чем больше разных предложений - тем лучше. Руководит «атакой» ведущий. С информацией о характере проблемы участники групповой работы знакомятся заранее. Все предложения выслушиваются без критики и оценки (за этим следит ведущий), а их анализ производится централизованно после завершения процесса высказывания идеи на основе записей, производимых секретариатом. В результате формируется список, в котором все представленные предложения структурируются по определенным параметрам (критериям), а также по их результативности в части решения обсуждаемой проблемы.

Метод Дельфи. Этот метод часто используют в тех случаях, когда сбор группы невозможен. В соответствии с процедурой членам группы не разрешается встречаться и обмениваться мнениями по поводу решаемой проблемы; этим обеспечивается независимость мнений. Процедура заключается в следующем (проходит этапы):

  • 1) членам группы предлагается ответить на перечень вопросов, детально сформулированных по рассматриваемой проблеме;
  • 2) каждый участник отвечает на вопросы анонимно;
  • 3) результаты ответов собираются в центре, и по результатам обработки ответов составляется интегральный документ, содержащий все предлагаемые варианты решений;
  • 4) каждый член группы получает копию интегрального документа;
  • 5) ознакомление с указанным документом (анализ предложений других участников группы) может изменить мнение некоторых участников группы в отношении возможных вариантов решений;
  • 6) этапы с 3-го по 5-й повторяют столько раз, сколько необходимо для достижения согласованного решения.

Этот метод применим, когда нет ограничений по времени выработки решения и решения принимаются экспертами. При выработке решений для конкретной организации с целью последующего внедрения целесообразно использовать иные методы групповой работы, позволяющие находить консенсус, а в процессе поиска решений из членов группы (руководства организации) может формироваться команда единомышленников.

Метод экспертных оценок. Основа этого метода заключается в использовании различных форм экспертного опроса с последующей оценкой и выбором предпочтительного варианта. Объективность экспертных оценок базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка эксперта о достоверности и значимости того или иного события. Истинное значение исследуемой характеристики находится внутри диапазона оценок, полученных от экспертов.

Метод «дерева целей» разработан на основе системного анализа проблемных ситуаций и предполагает использование иерархической структуры, полученной путем разделения общей цели на подцели. «Дерево целей» создается для анализа проблемной ситуации и наглядного представления результатов такого анализа. Идея разработки «дерева целей» принадлежит американскому исследователю Черчмену, применившему такой подход к исследованию проблем развития промышленности. В данном случае «дерево целей» представляет собой связанный граф без циклов. Таким образом, «дерево целей» - это граф, выражающий соподчинение и взаимосвязи элементов, которыми являются цели и ресурсы.

При построении «дерева целей» тенденции ожидаемого развития событий устанавливаются экспертными прогнозами. Определение основных факторов, влияющих на развитие ситуации, производится методом разработки сценариев. Сценариями называют гипотетические альтернативные описания того, что может произойти в будущем. Сценарии - это не просто плод фантазии, а логически обоснованные модели будущего, своеобразный рассказ о том, «что случится, если...». Обычно разрабатывают несколько сценариев: оптимистический, пессимистический и промежуточный. Перед разработкой сценария составляют перечни факторов, влияющих на ход событий и наличные ресурсы.

Поиск нестандартных решений вновь возникшей проблемы осуществляется методами генерирования альтернатив. Сравнительная предпочтительность различных альтернатив оценивается методом определения рейтингов или методами формирования оценочных систем. В их состав входят критерии оценки, шкалы измерения критериев, правила выбора наиболее предпочтительной альтернативы. Этот метод применяется в том случае, когда цель неясна, а есть только исходное состояние системы.

События нижнего уровня декомпозиции ранжируются по предпочтительности и вероятности наступления (рис. 5.3).

Наиболее предпочтительный вариант и является целью системы.

Методы морфологического анализа основаны на комбинировании выделенных элементов или их признаков в процессе поиска решения проблем. В рамках этого метода определяются все возможные элементы, от которых может зависеть решение проблемы, перечисляются возможные значения этих элементов, а затем наступает процесс генерирования альтернатив путем перебора всех возможных сочетаний этих значений.

Рис.

Метод отрицания и конструирования. Осуществляется формулировка некоторых предположений и замена их на противоположные с последующим анализом возникающих несоответствий.

Метод систематического покрытия поля заключается в выделении опорных пунктов знаний в исследуемой области, которые используются для заполнения поля некоторых сформулированных принципов мышления.

Метод синектики предназначен для генерирования альтернатив путем ассоциативного мышления, поиска аналогий поставленной задаче. Он заключается в следующем:

  • 1) формируется группа из 5-7 человек, имеющих гибкое мышление, опыт, психологическую совместимость, общительность и подвижность;
  • 2) вырабатываются навыки совместной групповой работы;
  • 3) перебираются не только известные подобные решения, но и все возможные и невозможные (фантастические) решения;
  • 4) запрещается обсуждать достоинства и недостатки членов группы;
  • 5) разрешается каждому прекратить работу в любой момент без объяснения причин;
  • 6) роль ведущего периодически переходит к другим членам группы.

В отличие от метода «мозговой атаки» здесь требуется специальная и длительная подготовка группы.

Деловые игры представляют собой имитационное моделирование реальных ситуаций, но при этом «игроки» ведут себя так, как если бы это происходило в реальной жизни. Данная ситуация снимает барьеры, имеющие место в реальной действительности: робость перед начальством и коллегами, запрет должностных инструкций, отсутствие необходимой информации, возможность использовать любые фантазии (например, деловая игра «маркетинг»).

Окончательное решение и выбор варианта из предлагаемых альтернатив производится, как правило, экспертным путем. Однако и здесь возникают вопросы. Даже обработанные соответствующими методами результаты экспертных оценок не гарантируют того, что будет принят лучший вариант решения. Кроме того, решение, принятое без участия лиц, которым предстоит внедрять его в жизнь, обычно реализуется с трудом. Задача состоит в том, чтобы эксперты и лица, внедряющие данное решение, стали единомышленниками.

Основные принципы системного анализа

Первый принцип системного анализа - это требование рассматривать совокупность элементов системы как одно целое или, более жестко, - запрет на рассмотрение системы как простого объединœения элементов.

Второй принцип состоит в признании того, что свойства системы не просто сумма свойств ее элементов. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у отдельных элементов.

Весьма важным атрибутом системы является ее эффективность. Теоретически доказано, что всœегда существует функция ценности системы - в виде зависимости ее эффективности (почти всœегда это экономический показатель) от условий построения и функционирования. Вместе с тем, эта функция ограничена, а значит можно и нужно искать ее максимум. Максимум эффективности системы может считаться третьим ее основным принципом.

Четвертый принцип запрещает рассматривать данную систему в отрыве от окружающей ее среды - как автономную, обособленную. Это означает обязательность учета внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть (подсистему) некоторой более общей системы.

Согласившись с крайне важно стью учета внешней среды, признавая логичность рассмотрения данной системы как части некоторой, большей ее, можно прийти к пятому принципу системного анализа - возможности (а иногда и крайне важно сти) делœения данной системы на части, подсистемы. В случае если последние оказываются недостаточно просты для анализа, с ними поступают точно также. Но в процессе такого делœения нельзя нарушать предыдущие принципы - пока они соблюдены, делœение оправдано, разрешено в том смысле, что гарантирует применимость практических методов, приемов, алгоритмов решения задач системного анализа.

При изучении системного подхода прививается такой образ мышления, который, с одной стороны, способствует устранению излишней усложненности, а с другой - помогает руководителю уяснять сущность сложных проблем и принимать решения на базе четкого представления об окружающей обстановке. Важно структурировать задачу, очертить границы системы. Но столь же важно учесть, что системы, с которыми руководителю приходится сталкиваться в процессе своей деятельности, являются частью более крупных систем, возможно, включающих всю отрасль или несколько, порой много, компаний и отраслей промышленности, или даже всœе общество в целом. Далее следует сказать, что эти системы постоянно.

Изменяются, они создаются, действуют, реорганизуются, и, бывает, ликвидируются.

В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы :

2. Построение модели изучаемой системы.

3. Отыскание решения задачи с помощью модели.

4. Проверка решения с помощью модели.

5. Подстройка решения под внешние условия.

6. Осуществление решения.

В каждом конкретном случае этапы системного занимают различный "удельный вес" в общем объёме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы - указать, где оканчивается данный этап и начинается очередной.

Системный анализ не должна быть полностью формализован, но можно выбрать некоторый алгоритм его проведения.

Системный анализ может выполняться в следующей последовательности :

1. Постановка проблемы - отправной момент исследования. В исследовании сложной системы ему предшествует работа по структурированию проблемы.

2. Расширение проблемы до проблематики, ᴛ.ᴇ. нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не должна быть решена.

3. Выявление целœей: цели указывают направление, в котором нужно двигаться, чтобы поэтапно решить проблему.

4. Формирование критериев. Критерий - это количественное отражение степени достижения системой поставленных перед ней целœей. Критерий -это правило выбора предпочтительного варианта решения из ряда альтернативных. Критериев должна быть несколько. Многокритериальность является способом повышения адекватности описания цели. Критерии должны описать по возможности всœе важные аспекты цели, но при этом крайне важно минимизировать число необходимых критериев.

5. Агрегирование критериев. Выявленные критерии бывают объединœены либо в группы, либо заменены обобщающим критерием.

6. Генерирование альтернатив и выбор с использованием критериев наилучшей из них. Формирование множества альтернатив является творческим этапом системного анализа.

7. Исследование ресурсных возможностей , включая информационные ресурсы.

8. Выбор формализации (моделœей и ограничений) для решения проблемы.

9. Построение системы.

10. Использование результатов проведенного системного исследования.

Схема алгоритма решения задач системного исследования конкретной проблемы представлена на рис. 6.1.

Рис.6.1. Алгоритм решения задач системного исследования конкретной проблемы

Этапы и последовательность системного анализа - понятие и виды. Классификация и особенности категории "Этапы и последовательность системного анализа" 2017, 2018.

Современный подход к решению технологических задач основан на принципах системного анализа. Согласно этим принципам технологический процесс рассматривается как сложная система, состоящая из элементов различных уровней детализации, начиная от молекулярного и кончая отдельным процессом.

Сущность системы невозможно понять, рассматривая только свойства отдельных элементов; для нее еще существенен, как способ взаимодействия элементов между собой, так и взаимодействие элементов или системы в целом с окружающей средой. Анализ элементарных процессов, производимый порознь, не дает еще возможности судить о какой-либо стадии технологического процесса в целом, точно так же, как и анализ отдельных стадий процесса без выявления взаимосвязи между ними и с окружающей средой, не дает возможности судить обо всем технологическом процессе.

При анализе технологического производства (цеха, завода, комбината) принято выделять несколько уровней иерархии, между которыми существуют отношения соподчиненности. На первом уровне находятся элементарные процессы технологии (химические, массообменные, тепловые, механические, гидромеханические) и на более высоких - элементы, которые могут быть выделены в таковые по какому-либо признаку, например, по административно-хозяйственному или производственному (цеха, производства, предприятия и т.д.). При анализе отдельного процесса в качестве элементов или ступеней иерархии могут выступать явления на макро- и микроуровнях, в совокупности определяющие целевую функцию процесса, например, химическое превращение, теплообмен и т. д. Основная идея системного анализа как раз и состоит в применении общих принципов разделения (декомпозиции) системы на отдельные элементы и установление связей между ними, в определении цели исследования и определения этапов для достижения этой цели.

Предметом изучения данного курса являются следующие системы: элементарные процессы; основные стадии технологического процесса, как правило, представляющие собой совокупность нескольких элементарных процессов; технологический процесс производства материалов в целом, а также сам результат производства - строительный материал как система.

Системный подход к исследованию технологических процессов имеет цель получения оценок функционирования процесса на любом уровне декомпозиции и осуществляется в несколько этапов. Отдельный элемент системы в зависимости от поставленной цели может рассматриваться как отдельная система с более детализованными уровнями декомпозиции.

Академик В. В. Кафаров выделяет четыре основных этапа системного исследования процесса.

1 этап - Смысловой и качественный анализы объекта производятся для выявления уровней декомпозиции, отдельных элементов и связей между ними. Установление уровней иерархии, выбор элементов осуществляются исходя из общей цели исследования и степени изученности процесса.



2этап - Формализация имеющихся знаний об элементах и их взаим о действии и представление этих знаний делается в виде математических моделей. Источником знаний обычно служат фундаментальные законы и экспериментальные данные. Создавая математическую модель, исследователь формализует рассматриваемый процесс, представляя его в виде математической связи между входными и выходными параметрами. Точность воспроизведения сущности рассматриваемого процесса на модели будет зависеть от степени его изученности.

3 этап - Математическое моделирование как метод исследования (классификация моделей и общие принципы моделирования изложены ниже) в настоящее время получил широкое распространение. Его применение непосредственно связано с ЭВМ. Сочетая достоинства теоретических и экспериментальных методов исследования, математическое моделирование позволяет не только исследовать явления, недоступные этим методам (в силу сложности математического описания или невозможности технической реализации), но и обобщать результаты на основе многократного использования модели и делать прогнозы о возможном поведении процесса при изменении определяющих параметров. Математическое моделирование - это воспроизведение реально протекающих явлений на модели. Адекватность, т. е. соответствие результатов моделирования экспериментальным данным, полученным на реальном объекте, определяется уровнем знаний о процессе и обоснованностью принятых допущений. Математическая модель представляет собой совокупность математического описания и алгоритма решения. Алгоритм должен быть доведен до конкретной реализации, т. е. до получения количественной связи между параметрами в результате выполнения программы на ЭВМ.



Рисунок 1 – Структура математической модели

4 этап - Идентификация математических моделей элементов состоит в определении неизвестных параметров и оценке параметров состояния объекта.

Явления, определяющие процессы химического превращения, диффузионного, конвективного и турбулентного переноса вещества, распределения материальных и тепловых потоков по своей природе, являются вероятностными. Детерминированные фундаментальные законы отражают лишь общий характер явления при совокупности ограничений и допущений. И в то же время, являясь основным аппаратом при построении математических моделей процесса, для решения конкретной задачи они нуждаются в количественных оценках вероятности свершения акта взаимодействия на микро- и макроуровнях.

Получить более реальные характеристики процесса можно лишь после проведения коррекции параметров модели, исходя из заданного критерия, по экспериментальным данным. Идентификация математической модели является одной из основных задач моделирования технологических процессов, и ее решение, особенно для нелинейных систем, практически невозможно без применения ЭВМ .

Итак, рассматривая технологический процесс как сложную систему, необходимо учитывать взаимодействие ее с внешней средой и внутренние взаимодействия отдельных элементов системы. Управляемую систему можно изобразить схемой, представленной на рисунке 2.

Рисунок 2 – Возмущающие воздействия среды

Это схема внешних связей системы. Всякая система имеет входы (обычно называются факторами и обозначаются X i) и выходы (часто называются "параметры оптимизации" и обозначаются Y j). Система с собственными параметрами (X is – геометрия аппарата, температура кипения рабочей жидкости и т.п.) со стороны внешней среды подвержена возмущениям ξ, имеющим случайный характер; для целенаправленного изменения значений выходов Y j и компенсации возмущений ξ используют управляющие воздействия ΔX i или ΔX is , формируемые на основе информации о числовых значениях Y j , X i и X is . Под информацией понимают фактические данные о структуре системы, происходящих в ней явлениях, возможных состояниях, поведении при изменении входных факторов или под воздействием случайных возмущений и т.п.

Количество информации определяется целями исследования. Она может быть собрана двумя разными способами: наблюдением и экспериментом. Наблюдение – это целенаправленное восприятие объекта без вмешательства в его поведение. Эксперимент – активное воздействие на объект с планомерным изменением, комбинированием различных условий с целью получения необходимого эффекта. Это более высокая ступень эмпирического уровня познания.

Воздействующие факторы различают: контролируемые, но нерегулируемые: известные (измеренные), но неизменяемые произвольно. Нерегулируемость связана с трудоемкостью регулирования. Например, практически невозможно изменить соотношение высоты и диаметра сушильного барабана в процессе его работы.

Контролируемые и регулируемые входы - это те воздействия, которые изменяют, чтобы управлять системой. Поэтому их обычно называют управляющими факторами или управлениями.

Неконтролируемые факторы - воздействия на систему, которые находятся вне нашего контроля. Причины неконтролируемости факторов могут быть различны:

1) неизученность объекта - неизвестно влияет ли данный фактор существенно на функционирование системы;

2) невозможность контролировать – например, индивидуальность человека;

3) каждое воздействие из этого множества слишком слабо, чтобы его стоило контролировать.

С другой стороны, воздействий так много, что все их контролировать практически невозможно, а совокупность воздействий может оказаться весьма ощутимой. Это влияние носит случайный характер. Обычно влияние неконтролируемых факторов называют шумом. Влияние шума на производстве проявляется в случайных возмущениях режима, в экспериментальных исследованиях - в случайных ошибках опытов .

Классификацию внешних связей системы можно представить в виде схемы, изображенной на рисунке 3.

Рисунок 3 – Классификация внешних связей системы