Применение стеклопластиковых конструкций. Стеклопластиковая арматура для коррозионностойких морских бетонных конструкций Стеклопластиковых конструкций

17.05.2020

Стеклопластиковая арматура занимает все более прочные позиции в современном строительстве. Это обусловлено, с одной стороны, ее высокой удельной прочностью (отношением прочности к удельной массе), с другой стороны, высокой коррозионной стойкостью, морозостойкостью, низкой теплопроводностью. Конструкции, где используется стеклопластиковая арматура, неэлектропроводны, что очень важно для исключения блуждающих токов и электроосмоса. В связи с более высокой стоимостью по сравнению со стальной арматурой, стеклопластиковая арматура используется, главным образом, в ответственных конструкциях, к которым предъявляются особые требования. К таким конструкциям относятся морские сооружения, особенно те их части, которые находятся в зоне переменного уровня воды.

КОРРОЗИЯ БЕТОНА В МОРСКОЙ ВОДЕ

Химическое действие морской воды обусловлено, главным образом, присутствием сернокислого магния, который вызывает два вида коррозии бетона - магнезиальную и сульфатную. В последнем случае в бетоне образуется комплексная соль (гидросульфоалюминат кальция), увеличивающаяся в объеме и вызывающая растрескивание бетона.

Другим сильным фактором коррозии является углекислота, которую выделяют органические вещества при разложении. В присутствии углекислоты нерастворимые соединения, обусловливающие прочность, переходят в хорошо растворимый бикарбонат кальция, вымываемый из бетона.

Морская вода действует наиболее сильно на бетон, находящийся непосредственно над верхним уровнем воды. При испарении воды в порах бетона остается твердый остаток, образующийся из растворенных солей. Постоянное поступление воды в бетон и последующее ее испарение с открытых поверхностей приводит к накоплению и росту кристаллов соли в порах бетона. Этот процесс сопровождается расширением и растрескиванием бетона. Кроме солей надводный бетон испытывает на себе действие попеременного замораживания и оттаивания, а также увлажнения и высыхания.

В зоне переменного уровня воды бетон разрушается в несколько меньшей степени, из-за отсутствия солевой коррозии. Подводная часть бетона, не подвергающаяся циклическому действию указанных факторов, разрушается редко.

В работе приведен пример разрушения железобетонного свайного пирса, сваи которого, высотой 2,5 м, в зоне переменного горизонта воды не были защищены. Уже через год было обнаружено почти полное исчезновение бетона из этой зоны, так что пирс держался на одной арматуре. Ниже уровня воды бетон остался в хорошем состоянии.

Возможность изготовления долговечных свай для морских сооружений заложена в применении поверхностного стеклопластикового армирования. Такие конструкции по коррозионной стойкости и морозостойкости не уступают конструкциям, выполненным полностью из полимерных материалов, а по прочности, жесткости и устойчивости их превосходят.

Долговечность конструкций с внешним стеклопластиковым армированием определяется коррозионной стойкостью стеклопластика. Благодаря герметичности стеклопластиковой оболочки бетон не подвергается воздействию среды и поэтому его состав может подбираться только исходя из требуемой прочности.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА И ЕЕ ВИДЫ

К бетонным элементам, где используется стеклопластиковая арматура, в основном применимы принципы проектирования железобетонных конструкций. Аналогична и классификация по видам применяемой стеклопластиковой арматуры. Армирование может быть внутренним, внешним и комбинированным, представляющим собой сочетание первых двух.

Внутреннее неметаллическое армирование применяется в конструкциях, эксплуатируемых в средах, агрессивных к стальной арматуре, но не агрессивных по отношению к бетону. Внутреннее армирование можно разделить на дискретное, дисперсное и смешанное. К дискретному армированию относятся отдельные стержни, плоские и пространственные каркасы, сетки. Возможна комбинация, например, отдельных стержней и сеток и др.

Наиболее простым видом стеклопластиковой арматуры являются стержни нужной длины, которые применяются взамен стальных. Не уступая стали по прочности, стеклопластиковые стержни значительно превосходят их по коррозионной стойкости и поэтому используются в конструкциях, в которых существует опасность коррозии арматуры. Скреплять стеклопластиковые стержни в каркасы можно с помощью самозащелкивающихся пластмассовых элементов или связыванием.

Дисперсное армирование заключается во введении в бетонную смесь при перемешивании рубленных волокон (фибр), которые в бетоне распределяются хаотично. Специальными мерами можно добиться направленного расположения волокон. Бетон с дисперсным армированием обычно называют фибробетоном.
В случае агрессивности среды к бетону эффектной защитой является внешнее армирование. При этом внешняя листовая арматура может выполнять одновременно три функции: силовую, защитную и функцию опалубки при бетонировании.

Если внешнего армирования недостаточно для восприятия механических нагрузок, применяется дополнительная внутренняя арматура, которая может быть как стеклопластиковой, так и металлической.
Внешнее армирование разделяется на сплошное и дискретное. Сплошное представляет собой листовую конструкцию, полностью покрывающую поверхность бетона, дискретное - элементы сетчатого типа или отдельные полосы. Наиболее часто осуществляется одностороннее армирование растянутой грани балки или поверхности плиты. При одностороннем поверхностном армировании балок целесообразно завести отгибы листа арматуры на боковые грани, что повышает трещиностойкость конструкции. Внешнее армирование может устраиваться как по всей длине или поверхности несущего элемента, так и в отдельных, наиболее напряженных участках. Последнее делают только в тех случаях, когда не требуется защита бетона от воздействия агрессивной среды.

ВНЕШНЕЕ СТЕКЛОПЛАСТИКОВОЕ АРМИРОВАНИЕ

Основная идея конструкций с внешним армированием состоит в том, что герметичная стеклопластиковая оболочка, надежно защищает бетонный элемент от воздействий внешней среды и, одновременно, выполняет функции арматуры, воспринимая механические нагрузки.

Возможны два пути получения бетонных конструкций в стеклопластиковых оболочках. Первый включает изготовление бетонных элементов, их сушку, а затем заключение в стеклопластиковую оболочку, путем многослойной обмотки стекломатериалом (стеклотканью, стеклолентой) с послойной пропиткой смолой. После полимеризации связующего обмотка превращается в сплошную стеклопластиковую оболочку, а весь элемент - в трубобетонную конструкцию.

Второй основан на предварительном изготовлении стеклопластиковой оболочки и последующем заполнении ее бетонной смесью.

Первый путь получения конструкций, где используется стеклопластиковая арматура, дает возможность создания предварительного поперечного обжатия бетона, что существенно повышает прочность и снижает деформативность получаемого элемента. Это обстоятельство особенно важно, так как деформативность трубобетонных конструкций не позволяет в полной мере воспользоваться значительным увеличением прочности. Предварительное поперечное обжатие бетона создается не только натяжением стеклонитей (хотя в количественном отношении оно составляет основную часть усилия), но и за счет усадки связующего в процессе полимеризации.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: КОРРОЗИОННАЯ СТОЙКОСТЬ

Стойкость стеклопластиков к воздействию агрессивных сред в основном зависит от вида полимерного связующего и волокна. При внутреннем армировании бетонных элементов стойкость стеклопластиковой арматуры должна оцениваться не только по отношению к внешней среде, но и по отношению к жидкой фазе в бетоне, так как твердеющий бетон является щелочной средой, в которой обычно применяемое алюмоборосиликатное волокно разрушается. В этом случае должна быть обеспечена защита волокон слоем смолы или использованы волокна другого состава. В случае неувлажняемых бетонных конструкций коррозии стекловолокна не наблюдается . В увлажняемых конструкциях щелочность бетонной среды можно существенно понизить, используя цементы с активными минеральными добавками.

Испытания показали , что стеклопластиковая арматура имеет стойкость в кислой среде более чем в 10 раз, а в растворах солей более чем в 5 раз выше стойкости стальной арматуры. Наиболее агрессивной для стеклопластиковой арматуры является щелочная среда. Снижение прочности стеклопластиковой арматуры в щелочной среде происходит в результате проникновения жидкой фазы к стекловолокну через открытые дефекты в связующем, а также посредством диффузии через связующее. Следует отметить, что номенклатура исходных веществ и современные технологии получения полимерных материалов позволяют в широких пределах регулировать свойства связующего для стеклопластиковой арматуры и получать составы с чрезвычайно низкой проницаемостью, а следовательно свести к минимуму коррозию волокна.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: ПРИМЕНЕНИЕ ПРИ РЕМОНТЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Традиционные способы усиления и восстановления железобетонных конструкций достаточно трудоемки и часто требуют продолжительной остановки производства. В случае агрессивной среды после ремонта требуется создать защиту сооружения от коррозии. Высокая технологичность, малые сроки твердения полимерного связующего, высокая прочность и коррозионная стойкость внешнего стеклопластикового армирования предопределили целесообразность его использования для усиления и восстановления несущих элементов сооружений. Применяемые для этих целей способы зависят от конструктивных особенностей ремонтируемых элементов.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ

Срок эксплуатации железобетонных конструкций при воздействии агрессивных сред резко сокращается. Замена их стеклопластбетонными ликвидирует затраты на капитальные ремонты, убытки от которых существенно возрастают, когда на время ремонта требуется остановка производства. Капиталовложения на возведение конструкций, где используется стеклопластиковая арматура, значительно больше, чем железобетонных. Однако через 5 лет они окупаются, а через 20 лет экономический эффект достигает двукратной стоимости возведения конструкций.

ЛИТЕРАТУРА

  1. Коррозия бетона и железобетона, методы их защиты / В. М. Москвин, Ф. М. Иванов, С. Н. Алексеев, Е. А. Гузеев. - М.: Стройиздат, 1980. - 536 с.
  2. Фролов Н. П. Стеклопластиковая арматура и стеклопластбетонные конструкции. - М.: Стройиздат, 1980.- 104с.
  3. Тихонов М. К. Коррозия и защита морских сооружений из бетона и железобетона. М.: Изд-во АН СССР, 1962. - 120 с.

Статья рассказывает о том, какими свойствами обладает стеклопластик и насколько он применим в строительстве и в быту. Вы узнаете, какие компоненты нужны для изготовления этого материала и их стоимость. В статье приведены пошаговые видео и рекомендации к применению стеклопластика.

С момента открытия эффекта быстрого окаменения эпоксидной смолы под действием кислотного катализатора стеклопластик и его производные стали активно внедрять в бытовые изделия и детали машин. На практике он заменяет или дополняет исчерпаемые природные ресурсы — металл и дерево.

Что такое стеклопластик

Принцип действия, заложенный в основу прочности стеклопластика, аналогичен железобетону, а по виду и структуре ближе всего к армированным слоям современной «мокрой» отделки фасадов . Как правило, вяжущее — композитный, гипсовый или цементный раствор — имеет свойство ссыхаться и трескаться, не удерживая нагрузку, а иногда даже не сохраняя целостности слоя. Чтобы этого избежать, в слой внедряют армирующий компонент — стержни, сетки или холст.

В результате получается уравновешенный слой — вяжущее (в высохшем или полимеризованном виде) работает на сжатие, а армирующий компонент работает на растяжение. Из таких слоёв на основе стекловолокна и эпоксидной смолы можно создать объёмные изделия, либо дополнительные усиливающие и защитные элементы.

Компоненты стеклопластика

Армирующий компонент*. Для изготовления бытовых и вспомогательных строительных элементов обычно используется три типа армировочного материала:

  1. Стеклосетка . Это сетка из стекловолокна с ячейкой от 0,1 до 10 мм. Поскольку эпоксидный раствор — агрессивная среда, для изделий и строительных конструкций настоятельно рекомендована сетка с пропиткой. Ячейку сетки и толщину нити следует подбирать, исходя из назначения изделия и требований к нему. Например, для армирования нагруженной плоскости стеклопластиковым слоем подойдёт сетка с ячейкой от 3 до 10 мм, толщиной нити 0,32-0,35 мм (усиленная) и плотностью от 160 до 330 г/куб. см.
  2. Стеклохолст. Это более совершенный вид основы стекловолокна. Он представляет собой очень густую сетку, изготовленную из «стеклянных» (кремниевых) нитей. Его применяют для создания и ремонта бытовых изделий.
  3. Стеклоткань. Имеет те же свойства что и материал для одежды — мягкий, гибкий, податливый. Этот компонент очень разнообразен — он различается по прочности на разрыв, толщине нити, густоте плетения, спецпропиткам — все эти показатели ощутимо влияют на конечный результат (чем они выше, тем прочнее изделие). Главный показатель — плотность, в пределах от 17 до 390 г/кв. м. Такая ткань значительно крепче даже знаменитого военного сукна.

* Описанные виды армировки применяются и для других работ, но в паспорте изделия обычно указывается их совместимость с эпоксидной смолой.

Таблица. Цены на стеклоткань (на примере продукции компании «Интеркомпозит»)

Вяжущее. Это и есть эпоксидный раствор — смола, смешанная с отвердителем. По отдельности компоненты могут храниться годами, но в смешанном виде состав твердеет от 1 до 30 мин, в зависимости от количества отвердителя — чем его больше, тем быстрее твердеет слой.

Таблица. Наиболее распространённые марки смолы

Популярные отвердители:

  1. ЭТАЛ-45М — 10 у. е./кг.
  2. ХТ-116 — 12,5 у. е./кг.
  3. ПЭПА — 18 у. е./кг.

Дополнительным химическим компонентом можно назвать смазку, которую иногда наносят для того, чтобы защитить поверхности от проникновения эпоксида (для смазывания форм).

В большинстве случаев баланс компонентов мастер изучает и подбирает самостоятельно.

Как применить стеклопластик в быту и в строительстве

В частном порядке этот материал чаще всего применяется в трёх случаях:

  • для ремонта стержней;
  • для ремонта инвентаря;
  • для усиления конструкций и плоскостей и при герметизации.

Ремонт стержней из стеклопластика

Для этого потребуется рукав из стеклоткани и высокопрочная марка смолы (ЭД-20 или аналог). Технически процесс подробно описан в этой статье . Стоит отметить, что углеволокно значительно прочнее стекловолокна, а значит, второе не подойдёт для ремонта ударного инструмента (молотков, топоров, лопат). При этом из стеклопластика вполне можно изготовить новую ручку или рукоятку для инвентаря, например, крыло мотоблока.

Полезный совет. Стеклопластиком можно усовершенствовать свой инструмент. Оберните пропитанным волокном рукоять рабочего молотка, топора, отвертки, пилы и сожмите в руке через 15 минут. Слой идеально примет форму вашей руки, что заметно отразится на удобстве в работе.

Ремонт инвентаря

Герметичность и химическая стойкость стеклопластика позволяют ремонтировать и герметизировать следующие изделия из пластика:

  1. Канализационные трубы.
  2. Строительные вёдра.
  3. Пластиковые бочки.
  4. Дождевые отливы.
  5. Любые пластиковые детали инструмента и техники, не испытывающие больших нагрузок.

Ремонт при помощи стеклопластика — пошаговое видео

У «самодельного» стеклопластика есть одно незаменимое свойство — он точно обрабатывается и хорошо держит жёсткость. Это значит, что из холста и смолы можно восстановить безнадёжно испорченную пластиковую деталь, либо изготовить новую.

Усиление строительных конструкций

Стеклопластик в жидком виде имеет прекрасную адгезию к пористым материалам. Иными словами, он хорошо сцепляется с бетоном и деревом. Этот эффект можно реализовать при монтаже деревянных перемычек. Доска, на которую нанесён жидкий стеклопластик, приобретает дополнительно 60-70% прочности, а значит, для перемычки или перекладины можно использовать доску вдвое тоньше. Если усилить этим материалом дверную коробку, она станет более устойчивой к нагрузкам и перекосам.

Герметизация

Ещё один способ применения — герметизация стационарных ёмкостей. Резервуары, каменные цистерны, бассейны, покрытые изнутри стеклопластиком, приобретают все положительные свойства пластиковой посуды:

  • нечувствительность к коррозии;
  • гладкие стены;
  • сплошное монолитное покрытие.

При этом создание такого покрытия обойдётся около 25 у. е. за 1 кв. м. О прочности изделий красноречиво говорят реальные испытания продукции одного из частных мини-заводов.

На видео — испытания стеклопластика

Особо стоит отметить возможность починки кровли. Правильно подобранным и нанесённым эпоксидным составом можно отремонтировать шифер или черепицу. С его помощью можно моделировать сложные светопрозрачные конструкции из оргстекла и поликарбоната — навесы, уличные светильники, скамейки, стенки и многое другое.

Как мы выяснили, стеклопластик становится простым и понятным ремонтно-строительным материалом, который удобно применять в быту. При развитом навыке из него можно создавать интересные изделия прямо в собственной мастерской.

Сравнительно большой эффект дает применение стеклопластиковых конструкций, подверженных воздействию различных агрессивных веществ, которые быстро разрушают обычные материалы. В 1960 г. на изготовление коррозиестойких стеклопластиковых конструкций только в США было израсходовано около 7,5 млн. долл. (общая стоимость светопрозрачных стеклопластиков, произведенных в 1959 г. в США, составляет примерно 40 млн. долл.). Интерес к коррозиестойким стеклопластиковым конструкциям объясняется, по данным фирм, в первую очередь их хорошими экономическими эксплуатационными показателями. Их вес намного меньше стальных или деревянных конструкций, они значительно долговечнее последних, легко возводятся, ремонтируются и очищаются, могут быть изготовлены на основе самозатухающих смол, а светопрозрачные емкости не нуждаются в водомерных стеклах. Так, серийная емкость для агрессивных сред высотой 6 м и диаметром 3 м весит около 680 кг, в то время как подобная стальная емкость весит около 4,5 т. Вес вытяжной трубы диаметром 3 м и высотой 14,3 м предназначенной для металлургического производства, составляет часть веса стальной трубы при одинаковой несущей способности; хотя стеклопластиковая труба в изготовлении обошлась в 1,5 раза дороже, она экономичнее стальной, поскольку, по данным зарубежных фирм, срок службы таких сооружений, изготовленных из стали, исчисляется неделями, из нержавеющей стали - месяцами, подобные же сооружения из стеклопластика эксплуатируются без повреждения годами. Так, труба высотой 60 ж и диаметром 1,5 м эксплуатируется седьмой год. Ранее же установленная труба из нержавеющей стали прослужила всего 8 месяцев, а ее изготовление и установка обошлись только в два раза дешевле. Таким образом, стоимость трубы из стеклопластика окупилась уже через 16 месяцев.

Примером долговечности в условиях агрессивной среды являются также емкости из стеклопластика. Подобные емкости можно встретить даже в исконно русских банях, так как они не подвержены влиянию высоких температур, подробнее информацию о различном качественном оборудовании для бань можно найти на сайте http://hotbanya.ru/ . Такая емкость диаметром и высотой 3 м, предназначенная для различных кислот (в том числе серной), с температурой около 80° С эксплуатируется без ремонта 10 лет, прослужив в 6 раз больше, чем соответствующая металлическая; лишь одни ремонтные расходы на последнюю за пятилетний период равны стоимости емкости из стеклопластика. В Англии, ФРГ и США широкое распространение также нашли емкости в виде складов и резервуаров для воды значительной высоты. Наряду с указанными крупногабаритными изделиями в ряде стран (США, Англия) в серийном порядке из стеклопластиков изготовляются трубы, секции воздуховодов и другие подобные элементы, предназначенные для эксплуатации в условиях агрессивных сред.

Среди множества новых pазнообpазных конструкционных синтетических материалов наибольшее pаcпpocтpанeниe для постройки малых судов получили стеклоппластики, состоящие из стекловолокнистого армирующего материала и связующего (чаще вceгo — на основе полиэфирных cмoл). Эти композиционные материалы обладают целым рядом достоинств, обусловивших их популярность среди конструкторов и строителей малыx судов.

Процесс отверждения полиэфирных смол и пoлучения стeклопластиков на их основе может происходить при комнатной температуpe, что позволяет изготовлять изделия без нагрева и повышенного давления, что, в свою очередь, исключает необходимость в сложных процессах и дорогостоящем оборудовании.

Полиэфирные стеклопластики обладают высокой механической прочностью и не уступают, в некоторых случаях, стали, обладая при этом гоpаздо меньшей удельной массой. Кроме тогo, стеклопластики обладают большой демпфирующей способностью, что позволяет корпусу cyдна выдерживать большие ударныe и вибрационные нагрузки. Если же сила удара превысит критическую нагрузку, то pазрушения в пластмассовом корпусе, как пpавило, локальны и не pаcпpoстpаняются на большую площадь.

Cтeклопластик обладает относительно высокой стойкостью к действию воды, масла, дизельного топлива, атмосферных влияний. Из стeклопластика иногда изготавливают топливные и водяные цистерны, причем полупрозрачность материала позволяет наблюдать уровень хpанящейся жидкости.

Корпуса небольших судов из стeклопластика обычно монолитны, что исключает возможность пpоникновeния воды внутрь; они не гниют, не корродируют, окрашивать заново их можно раз в несколько лет. Для спортивных судов важна возможность получения идeально гладкой наружной поверхности кopпуса, обладающей низким сопротивлением тpeния при движении в воде.

Однако как конструкционный материал стeклопластик имеет и некотоpыe недостатки: сpавнительно нe высокую жесткость, тенденцию к ползучести при действии постоянных нагpузок; соединения деталей из стeклопластика обладают сравнительно низкой прочностью.

Стеклопластики на основе полиэфирных смол изготавливаются при тeмпepатype 18 — 25 0 С и не требуют дополнительного нагpeва. Отверждение полиэфирных стeклопластиков пpoтeкаeт в две стадии:

1 стадия – 2 — 3 суток (материал набирает примерно 70 % своей прочностиl;

2 стадия – 1 – 2 месяца (наращивание прочности до 80 — 90 %).

Для достижения максимальной прочности конструкции необходимо, чтобы содержание связующего в стeклопластикe было минимально достаточным для заполнения всех зазоров армирующего наполнителя с цепью получения монолитного материала. В обычных стеклопластиках соотношение связующее — наполнитeль составляет обычно 1:1; в этом случае суммаpная прочность стeклянных волокон испопьзуется на 50 — 70 %.

Основными армирующими стекловолокнистыми матepиалами являются жгуты, холсты (cтeклoматы, рубленое волокно и стeклоткани.

Применение тканых матepиалов с использованием крученых стеклонитей в качестве армирующих наполнителей для изготовления корпусов катepов и яхт из стeклопластиков вряд ли оправдано как экономически, так и тexнoлoгически. Наоборот, нeтканыe матepиалы для тех же целей являются очень перспективными и объем их применения растет с каждым годом.

Наиболее дешевый напопнитепь — это стекложгуты. В жгуте стeклянныe волокна раcпoлoжены параллельно, что позволяет получить стеклопластик, обладающий высокой прочностью при pазрыве и продольном сжатии (по длине волокна). Поэтому жгуты пpимeняются для пoлyчeния изделий, где необходимо добиться преимущественной прочности в одном направлeнии, например, балок набора. При постройке корпусов нарезанные (10 — 15 мм) жгуты используют для уплотнения конструктивных зазоров, обpазующихся при выполнении pазличногo рода соединений.

Рублeные стекложгуты служат также для изготовления корпусов небольших катеров, яхт, получаемых путем напыления волокон в смеси с полиэфирной смолой на соответствующую форму.

Стеклохолсты — рулонные материалы с хаотической укладкой стеклонитей в плоскости листа — тоже изготовляют из жгутов. Стеклопластики на основе холстов имeют более низкие прочностные характеристики, чем стеклопластики на основе тканей, вследствие более низкой прочности самих холстов. Но стеклохолсты, дешевле, имеют значительную толщину при малой плотности, что обеспечивает их хорошую пропитку связующим.

Слои стеклохолстов мoгут связываться в поперечном направлении химически (с помощью связующих) или механической пpoшивкой. Такие армирующие наполнители укладываются по поверхности с большой кривизной легче чем ткани (ткань образует складки, требует предварительного pаскpoя и подгонки). Хопсты, применяют преимущественно при изготовлeнии корпусов шлюпок, мотолодок, яхт. В комбинации со стеклотканями холсты мoгут пpимeняться для изготовлeния корпусов судов, к которым предъявляются более высокие прочностные требования.

Наибoлее отвeтствeнныe конструкции изготавливаются на основе стеклотканей. Чаще вceгo пpимeняются ткани сатиновoгo пepeплeтeния, которые обеспечивают более высокий коэффициент использования прочности нитей в стеклопластике.

Кроме тoгo, в мелком судостроении широко используют жгутовую стеклоткань. Она изготавливается из некрученых нитей — жгутов. Эта ткань имеет бoльший вес, мeньшую плотность, но и мeньшую стоимость, чем ткани из крученых нитей. Поэтому применение жгутовых тканей весьма экономично, учитывая, к тому же, мeньшую трудоемкость при формовании конструкций. При изготовлении шлюпок, катеров жгутовая ткань часто пpимeняeтся для наружных слоев стеклопластика, внутренние же слои выкладываются из жесткого стеклохолста. Этим достигается удешевление конструкции с одновременным обеспечением необходимой прочности.

Весьма специфично применение однонаправленных жгутовых тканей, имеющих преимущественную прочность в одном напpавлeнии. Такие ткани при формовании судовых конструкций укладывают так, чтобы направлeние наибольшей прочности соответствовало наибольшим действующим напряжениям. Это бывает нужно при изготовлении, например, pангоута, когда необходимо учитывать сочетание прочности (особенно в одном напpавлeнии), лeгкости, конусности, изменяющейся толщины стенки и гибкости.

Поскопьку основные нагрузки на pангоут (в частности, на мачту) дeйствуют в основном вдоль осей, именно использование однонаправленных жгутовых тканей (при pаcпoложении волокон вдоль pангоута обеспечивает требуемые прочностные xаpактepиcтики. В этом случае возможно также изготовление мачты методом намотки жгута на сердечник (деревянный, металлический и т. п.), который впоследствии может извлекаться или оставаться внутри мачты.

В настоящее вpeмя большое применение при изготовлении катеров, яхт и шлюпок нашли так называемые трехслойные конструкции с лeгковeсным заполнителем в середине.

Tpexcлoйная конструкция состоит из двух наружных несущих слоев, выполненных из прочнoгo листового материала малой толщины, между которыми размещается более лeгкий, хотя и менее прочный заполнитель. Назначение заполнителя обеспечить совместную работу и устойчивость несущих слоев, а также сохранить заданное pасстояниe между ними.

Cовместная работа слоев обеспечивается за счет их соединения с заполнителем и передачи последним усилий с одного cлoя на другой; устойчивость слоев обеспечивается, так как заполнитель создает для них практически нeпрерывную опору; необходимое pасстояниe между слоями сохpаняется за счет достаточной жесткости заполнителя.

По cpавнению с традиционными однослойными, тpeхслойная конструкция обладает повышенной жесткостью и прочностью, что позволяeт уменьшить толщину обoлочек, панелей и число ребер жесткости, что сопровождается существенным умeньшeниeм массы конструкции.

Трехслойные конструкции мoгут изготавливаться из любых материалов (древесины, мeталла, пластмасс), однако наиболее широкое распространение они получили при использовании полимерных композиционных материалов, которые могут использоваться как для несущих слоев, так и для заполнителя, а их соединение друг с другом обеспечивается склеиванием.

Помимо возможности уменьшения массы, трехслойные конструкции обладают и другими положительными качествами. В бoльшинстве случаев кроме своей основной функции обpазовывать корпусную конструкцию — они выполняют и pяд других, напpимep, придают свойства тепловой и звуковой изоляции, обеспечивают запас аварийной плавучести и т. п.

Трехслойные конструкции благодаря отсуствию или сокpащению элементов набора позволяют более рационально использовать внутренние обьемы помещений, прокладывать электротpассы и некоторые трубопроводы в самом заполнителе, облегчить поддержание чистоты в помещениях. Благодаpя отсуствию концентpаторов напряжений и исключению возможности появления усталостных трещин трехслойные конструкции имеют повышенную надежность.

Oднако не вceгда удаeтся обеспечить хорошyю связь между несущими слоями и заполнителем из-за oтсутствия клеев с необходимыми свойствами, а также недостаточно тщательнoгo соблюдения технологического процесса склеивания. Вследствие сравнительно малой толщины слоев болeе вepoятны их повреждения и фильтpация воды через них, котоpая может pаcпpoстpаниться по всему объему.

Hecмoтpя на это трехслойные конструкции широко применяются для изготовления корпусов шлюпок, катepoв и небольших судов (длиной 10 – 15м), а также изготовления отдепьных конструкций: палуб, надстpoeк, рубок, переборок и т. п. Заметим, что корпуса катepoв и шлюпoк, в которых пpocтpанство между наружной и внутренней обшивками заполняется пeнoпластoм в целях обеспечения плавучести, стpoгo говopя, не вceгда мoгут быть названы трехслойными, так как они не пpeдставляют собой плоские или криволинейные трехслойные пластины с малой толщиной запопнителя. Такие конструкции пpавильнee называть двуxобшивочными или двухкорпусными.

Наиболее целесообразно выполнять в трехслойном исполнении элементы рубок, переборки и т. п., которые имеют обычно плоские нeсложные формы. Эти конструкции pаcпoлагаются в верхней части кopпуса, и уменьшение их массы положительно сказывается на остойчивости судна.

Применяемые в настоящее вpeмя трехслойные судовые конструкции из стеклопластика по роду заполнителя можно классифицировать спедующим образом: со cплoшным запопнителем из пeнoпласта, древесины бальзы; с сотовым заполнителем из стеклопластика, алюминиевой фольги; коробчатыые панели из полимерных композиционных матepиалoв; комбинированные панели (коробчатые с пеноплаcтoм). Несущие слои по своей толщине могут быть симметричными и несимметричными относительно срединной поверхности конструкции.

По методу изготовления трехслойные конструкции мoгут быть склеиваемыми, с вспениваемым запопнителем, формуемыми на специальных установках.

В качестве основных компонентов для изготовления трехслойных конструкций применяются: стеклоткани марок Т – 11 – ГВС – 9 и ТЖС-О,56-0, стеклосетки различных марок; полиэфирные смолы маруи ПН-609-11М, эпоксидные смолы марки ЭД — 20 (или других марок, подобных по свойствам), пенопласты марок ПХВ — 1, ПСБ — С, ППУ-3с; трудносгораемый слоистый пластик.

Трехслойные конструкции изготавливают монолитными или собирают из отдельных элементов (секций) в зависимости от размеров и формы изделий. Второй способ более универсален, так как применим для конструкций любых габаритов.

Технология изготовления трехслойных панелей состоит из трех самостоятельных процессов: изготовления или подготовки несущих слоев, изготовления или подготовки запопнителя и сборки и склейки панели.

Несущие слои мoгут изготавливаться предварительно или непосредственно при формовании панелей.

Заполнитель также может быть применен либо в виде готoвыx плит, либо вспениваться за счет повышения температуры или за счет смешивания соответствующих компонентов в процессе изготовления панелей. Сотовый заполнитель изготавливается на специализированных предприятиях и поставляется в виде нарезанных плит определенной толщины либо в виде сотоблоков, требующих разрезки. Плиточный пенопласт режется и обрабатывается на столярных ленточных или циркульных пилах, рейсмусовых и других деревообрабатывающих станках.

Решающее влияние на прочность и надежность трехслонных панелей оказывает качество склеивания несущих споев с заполнителем, которое, в свою очередь, зависит от качества подготовки склеиваемых поверхиостей, качества образующейся клеевой прослойки и соблюдения режимов склеивания. Операции подготовки поверхностей и нанесения клеевых прослоек подробно рассмотрены в соответствующей литературе по склеиванию.

Для склеивания несущих слоев с сотовым заполнителем рекомендуются клеи марок БФ — 2 (горячего отверждения), К-153 и ЭПК-518-520 (холодного отверждения), а с плиточными пенопластами клеи марок К-153 и ЭПК-518-520. Последние обеспечивают более высокую прочность склейки, чем клей БФ-l, и не требуют специального оборудования для создания требуемой температуры (около 150 0 С). Однако их стоимость В 4 — 5 pаз вышe, чем стоимость клея БФ — 2, а вpeмя отверждения составляет 24 — 48 часов (вpeмя отверждения БФ – 2 — 1 час).

При вспенивании пенопластов между нecyщими слоями нанесение клеевых прослоек на них, как пpавило, не требуется. После склейки и необходимой выдержки (7 — 10 суток) может производится механическая обpаботка панелей: обрезка, сверление, вырезка отверстий и т. п.

При сборке конструкций из трехслойных панелей следует учитывать, что в узлах соединений обычно происходит нагружение панелей сосредоточенными нагрузками и Узлы необходимо усиливать специальными вставками из более плотного, нежели запопнитель, материала. Основными видами соединений являются мeханические, формованные и комбинированные.

При креплении деталей насыщение на тpexспойных конструкциях необходимо предусматривать внутренние усиления в запопнитепе, ocoбенно при применении механического крепежа. Один из способов такoгo усиления, а также технологическая последовательность выполнения узла показаны на рисунке.

Строительство – это сфера, в пользу которой неустанно трудится химическая промышленность, создавая новые сплавы и материалы для производства различных изделий. Одним из наиболее важных и перспективных достижений в этой сфере за последние годы можно назвать результаты, связанные с работой над таким композиционным материалом как стеклопластик. Многие инженеры и строители называют его материалом будущего, так как он сумел превзойти по своим качествам многие металлы и сплавы, в том числе, легированную сталь.

Что собой представляет стеклопластик? Это композит, имеющий две составляющие: армирующую и связующую основы. В роли первой выступает стекловолокно, вторая – это различные по своему химическому составу смолы. Вариации с количеством тех и других позволяют сделать стеклопластик устойчивым к условиям практически любой среды. Но следует понимать, что не существует универсального вида стеклопластика, каждый их них рекомендован к использованию в определенных эксплуатационных условиях.

Стеклопластик интересен проектировщикам тем, что готовая продукция из него появляется одновременно с самим материалом. Эта особенность дает большой простор для фантазии, позволяя изготовить изделие с индивидуальными физико-механическими характеристиками по заданным параметрам клиента.

Одним из наиболее распространенных строительных материалов из стеклопластика является решетчатый настил. В отличие от стальных настилов он производиться методом литья, что придает ему такие характеристики как низкая теплопроводность, изотропность, и конечно как и у материалов из стали - прочность и долговечность.

Из стеклопластикового решетчатого настила изготавливают лестничные ступени, впрочем, при этом и вся конструкция выполняется также из стеклопластиковых деталей: стойки, поручни, опоры, швеллера.

Безусловно, такие лестницы являются очень долговечными, им не страшна коррозия и воздействие химических веществ. Они легки в перевозке и монтаже. В отличие от металлоконструкций для их установки достаточно нескольких человек. Дополнительным плюсом является возможность выбора цвета, что повышает внешнюю привлекательность объекта.

Очень большую популярность приобрели сходни, изготавливаемые из стеклопластика. Их надежность обусловлена все теми же уникальными характеристиками описываемого нами композита. Пешеходные зоны, оборудованные сходнями из стеклопластика, не требуют особого ухода, их эксплуатационные возможности гораздо выше однотипных металлоконструкций. Доказано, что срок службы стеклопластика гораздо дольше последних и составляет более 20 лет.

Еще одним высокоэффективным предложением является система поручней из стеклопластика. Все запчасти перилл очень компактны и легки для ручной сборки. Кроме того, для клиента существует множество вариаций готовой конструкции, а также возможность осуществить собственный проект.

Благодаря диэлектрическим свойствам стеклопластика из него производят кабельные каналы. Изотропность этого материала повышает спрос на продукцию, планируемую к использованию на объектах, чувствительных к электромагнитным колебаниям.

В целом, можно отметить, что ассортимент продукции из стеклопластика достаточно широк. Работая с ним, строители и проектировщики могут реализовать самые фантастические идеи. Все предлагаемые нашей компанией конструкции надежны и прочны. Качество стеклопластика формирует сравнительно высокую цену на него, но при этом она является оптимальным соотношением преимуществ этого материала и спроса на него. Да и при том, важно понимать, что затраты на его покупку окупятся в дальнейшем благодаря сокращению расходов на его транспортировку, монтаж и последующее обслуживание.