Снятие показаний приборов учета тепловой энергии. Искажение приборного учета энергетических и природных ресурсов и борьба с ним

28.08.2020

Описание:

Проводимое в последнее десятилетие массовое внедрение приборов учета воды и тепла заставляет потребителей задумываться о путях снижения платежей за используемые ресурсы. Однако далеко не все начинают экономить на фактическом потреблении. Часто проблема решается более простым способом – манипуляциями с прибором учета. Этой статьей авторы надеются привлечь внимание специалистов метрологических служб, водо- и энергоснабжающих организаций с целью разработать методы борьбы с хищениями тепла и воды.

О некоторых методах «экономии» при ведении коммерческого учета воды и тепла

Изменение во времени среднечасовых расходов М 1 и М 2 на вводе системы отопления и относительного расхождения их показаний

На рис. 1 в графическом виде показан пример «ремонта» тепло-счетчика прямо на месте эксплуатации, без его отключения и демонтажа, видимо, с применением ноутбука и сервисной программы.

По данным энергоснабжающей организации, данный узел учета оснащен весьма современным теплосчетчиком и введен в эксплуатацию осенью 2002 года. Но уже к февралю 2003 года сервисная организация, обслуживающая этот узел учета, обнаружила заметное отставание показаний канала М 1 от соответствующих показаний канала М 2 (измеренная «утечка» и несанкционированный водоразбор составили около -120 т за месяц).

Отрицательное расхождение каналов измерений М 1 и М 2 в закрытой системе на -1,7 % наладчику показалось неприличным, и «эффективное» решение проблемы было найдено: в 11:22 27 февраля цена импульса расходомера обратной воды была уменьшена ровно на 3,0 %! И это при том, что допускаемая погрешность измерения расхода для данных расходомеров равна ±1 %. Таким образом, отрицательная поправка к показаниям расходомера М 2 троекратно (!) превысила метрологический допуск.

В результате такой тайной «наладки» (энергоснабжающая организация, как всегда, оказалась не в курсе этого события) образовалась «утечка» положительная (около 100 т в месяц). Здесь уместно предположить, что таким образом сервисная организация решила скомпенсировать убытки, ранее причиненные поставщику тепла своим безответственным «сервисом».

Конечно же, сервисная организация не призналась в факте самовольного и незаконного вмешательства в работу защищенного и опломбированного коммерческого узла учета и объснила это явление самопроизвольным уменьшением показаний канала измерений М 2 ровно на 3 %.

Приведем еще один наглядный пример тому, как самопроизвольно по рабочим дням и в рабочее время изменяются важнейшие настройки тепловычислителей, непосредственно влияющие на результаты учета и, следовательно, на объемы платежей за потребляемые тепловую энергию и теплоноситель.

На рис. 2 приведен график изменения во времени среднечасовых относительных расхождений измеренных часовых энергий W (хранящихся в часовых архивах) и их упрощенных расчетных аналогов:
W расч = 0,001 .
При этом для определения W расч были использованы значения М 1 , М 2 , t 1 , t 2 из соответствующих часовых архивов, а среднечасовые расхождения для каждого часа были рассчитаны по формуле
d W = [(W - W расч) / W расч ] 100 %. В начальный период времени среднечасовые значения d W близки к нулю, что однозначно свидетельствует о том, что до 16-го часа 19 декабря в теплосчетчике применялась полная формула расчета теплопотребления:
W = 0,001 . Но 19 декабря примерно в 15:40 скачкообразно возникла систематическая нехватка энергии в часовых архивах на среднем уровне -4,7 %.

Более детальное изучение этого явления показало, что в этот момент времени было выполнено переключение опломбированного тепловычислителя на неполное уравнение измерений:
W от = 0,001 , что и привело к потере (обнулению) учетной составляющей:
W гвс = 0,001 [(M 1 - M 2) (h 2 - h хв)] и, как следствие, к систематическому занижению теплопотребления на уровне -4,7 %. Однако и в данном случае сервисная организация активно отрицала факт тайного переключения уравнений измерений тепловой энергии, и т. к. наладчик не был пойман с поличным в присутствии свидетелей, то доказать преднамеренность тайного искажения результатов учета весьма непросто. Ведь существует вероятность, что разработчик такого современного теплосчетчика и сервисная организация ни в чем не виноваты, а вся эта «экономия» происходит исключительно из-за случайных программных сбоев.

По данным авторов, уже многие типы цифровых теплосчетчиков могут быть перенастроены без снятия пломб при помощи калибровочных программ или известных кодов доступа. Для входа в калибровочную программу достаточно ввести пароль. Известны типы теплосчетчиков и расходомеров, у которых для входа в режим корректировки калибровочных данных необходимо к определенному месту корпуса прибора поднести специальное устройство.

к.т.н. И.П.Андреев, Докторант Самарского государственного технического университета, директор ЗАО «Точэнерго» г. Тольятти

В статье рассмотрены типичные способы искажения показаний приборов учета и методы борьбы с ними.

Одна из основных общефедеральных проблем учета и сбережения природных и энергетических ресурсов (ПЭР) при их добыче, транспортировке, переработке, хранении, продаже и применении - это искажение учета ПЭР и их потерь, особенно в денежном выражении. Проблема учета потерь ПЭР имеет ряд скрытых от широкой публики отрицательных организационно-методических особенностей, не свойственных цивилизованным системам ведения учета.

Широко распространена ненаказуемая практика материального стимулирования работников для получения дохода («экономии») путем мошеннического несанкционированного искажения показаний приборов учета.

Рассмотрим типичные способы искажения показаний приборов учета и методы борьбы с ним.

1 . Использование для изменения показаний приборов гидродинамических факторов

Один из самых доступных способов изменения показаний приборов с помощью подручных сантехнических средств - изменить эпюру скоростей и закрутку потока с помощью нестандартной уплотнительной прокладки, устанавливаемой между прямым участком на входе потока в датчик и самим датчиком.

Конструкции и материалы прокладок могут быть самыми различными. Можно уменьшить внутренний диаметр прокладки и даже выполнить винтовую нарезку с закруткой потока. Если прокладка мягкая, начнет вибрировать и вызывать пульсации потока, то теоретически это может снизить эффект, т.к. пульсации потока приводят, например, к завышению показаний турбинных счетчиков. Если прокладка имеет внутреннюю винтовую нарезку и представляет собой завихритель потока, но неправильно сконструирована, это вызовет дополнительное падение давления и возможный шум в трубопроводе. Завихритель потока можно устанавливать и перед прямым участком по потоку, особенно если по рекомендации завода-изготовителя прибора допускается небольшая длина участка (3…5 диаметров условного прохода).

Загрязненные фильтры, загрязненные внутренние поверхности трубопроводов и частично открытые задвижки (краны), установленные вблизи датчика расхода, также вызывают изменения эпюры скоростей и приводят к погрешностям. Известен случай, когда вследствие частичного засорения входного фильтра показания теплосчетчика в одной из московских гостиниц были занижены на 30%.

Другой случай зарегистрирован автором на одной из плодоовощных баз, где частичное перекрытие входной задвижки перед теплосчетчиком в теплую погоду систематически приводило к занижению показаний расхода примерно на порядок. Увеличение расхода до нижней границы рабочего диапазона, напротив, приводило к восстановлению достоверных показаний. Однако точно не выявлено, связано ли занижение показаний с эпюрой скоростей или порогом чувствительности канала измерения расхода.

Завоздушивание потока с помощью центробежного насоса, установленного в магистрали, или внешнего компрессора также вызывает изменение показаний приборов учета. Хорошо известно использование компрессоров для целей завышения показаний счетчиков на автозаправочных станциях. При этом объемный счетчик, в силу физических особенностей своей работы, отображает объем не только продукта, но и закаченного с продуктом воздуха.

В то же время завоздушивание потока с помощью насосов в пищевой промышленности, в частности, в алкогольной отрасли, приводит к неблагоприятному для производителя дисбалансу объемов, измеряемых счетчиком и определяемых по количеству заполненных через дозатор бутылок. Объяснение этому явлению достаточно простое - в воде воздух растворен в количестве до 3% по объему (при атмосферном давлении), а при сильной встряске, как из шампанского, он выделяется. Чтобы избавиться от этого явления, надо либо насос менять, либо расход уменьшать, либо счетчик устанавливать по потоку до насоса. Если устанавливается воздухосборник, то следует обязательно инструментально проконтролировать эффективность его работы. Очень часто случается, что воздухосборники, даже сложные по конструкции, не создают гасящего эффекта на пищевых продуктах.

Изменение шероховатости поверхностей. Известно, что внутренние стенки трубы и лопасти турбинки должны иметь шероховатые поверхности. Если поверхность лопастей очень гладкая, например, покрыта пленкой или отполирована, это существенно затруднит турбулизацию потока вдоль лопасти и достижение критического числа Рейнольдса. В свою очередь это существенно увеличит скольжение турбинки в эксплуатации и приведет к заметному занижению показаний счетчика (рис. 1). Для сведения, на планерах специально натягивают нить впереди крыльев, чтобы вызвать турбулизацию потока и большую, при том же угле атаки, подъемную силу.

Еще один способ - замена откалиброванных шайб и турбинок поверенных счетчиков на поддельные, с другим диаметром отверстия шайбы или другим углом винтовой нарезки турбинки. В трубе чувствительные элементы не видны, а при вскрытии практически невозможно обнаружить дефект или обвинить заказчика подделки в умышленном занижении показаний.

2. Механическое и магнитное торможение

Механическое торможение крыльчатки с помощью лески, пропущенной через кран или при помощи пробки фильтра, при организации квартирного учета водопотребления. Особенно эффективна идея с пробкой, поскольку наглядно демонстрирует некомпетентность проектировщиков и инспекторов в вопросах приборного учета.

Если сеточные фильтры в квартирах установлены по потоку впереди счетчиков воды и не опломбированы, то коммутация потоков через фильтровые пробки с помощью гибких шлангов приводит к «скручиванию» показаний счетчиков.

Магнитное торможение крыльчаток и магнитных муфт с помощью внешнего постоянного или вращающегося магнитного поля возможно, но при наличии на счетчике ферромагнитных экранов обычно неэффективно. По-видимому, требуются дополнительные исследования по данному вопросу.

Что касается вихревых счетчиков с постоянным магнитным полем возбуждения, то, как показали наши экспериментальные исследования, имеются возможности для изменения (фальсификации) регистрируемого счетчиком нижнего предела измерения по порогу чувствительности. Другими словами, если электронный регистратор вихревого счетчика настроен на 1 м 3 /ч, то с искусственной компенсацией магнитного поля срабатывание может происходить при значительно большем расходе, например, при 4 м 3 /ч. Объемы с расходом до приведенного значения будут регистрироваться по меньшей предварительной настройке. Все, что для этого требуется, - это время от времени подключать к магнитной системе вихревого датчика внешнюю электромагнитную систему из блока питания и соленоида, в качестве сердечника которого выбирается магнит вихревого датчика. При 2-трубных измерениях требуется 2 соленоида. Однако для технологических измерений вихревой датчик описанной конструкции может представлять интерес.

3. Температурные факторы

На 1-м же узле учета наших инструментальных обследований был выявлен факт занижения показаний температуры подачи теплоносителя на 20 °С, что давало крупному потребителю почти 50% занижение показаний узла теплоучета. Источником дефекта служил нестандартный термокарман (термогильза), выполненный из отрезка водопроводной трубы, который выступал над трубопроводом подачи примерно на 8 см и был доверху заполнен жидкостью. Поскольку термокарманы не подвергаются ревизии при их монтаже на трубопроводе, их особая конструкция и заполнение жидкостью сверх рабочего уровня чувствительного элемента термометра сопротивления могут также способствовать изменению показаний счетчиков.

Можно заменить термометр сопротивления на поддельный или подключить параллельно ему или линии связи резистор определенного номинала. Эффект аналогичен предыдущему, а при наличии скрытого коммутируемого резистора, сложно обнаружить причину занижения показаний при проведении инспекционных проверок.

4. Влияние асимметрии кабелей и правильности заземления

На 2-х однотипных узлах учета было обнаружено расхождение примерно на 4% показаний цифровых расходомеров и подключенных к ним вычислителей, причем, как ни странно, в одном случае показания расходомера были выше показаний вычислителя, а в другом, наоборот. Объяснить этот факт можно тем, что вместо кабеля с жилами одного сечения применялись заключенные в металлорукав асимметричные провода, а также неверно исполненным заземлением, что приводило к контурным токам соответствующего направления.

5. Неправильное пломбирование и наличие клавиатуры

Наличие мягких, особенно пластилиновых, пломб на компонентах узлов учета позволяет делать с пломб оттиски и вскрывать узлы учета с обеспечением изменения показаний любым доступным способом. Примечательно, но однажды налоговая инспекция отказала автору в изъятии образцов свинцовых пломб с исследуемого узла учета алкогольной продукции, т.к. пломбы с отрезанными концами проволоки подлежали учету. Возможно, в сдаче использованных пломб заложен смысл не только утилизации свинца, но и глубокий смысл контроля за подделками (по внешним признакам и составу).

После завершения обучения одной из тепловых инспекций автор попросил выполнить контрольное пломбирование любого узла учета с тем, чтобы нельзя было, как обещано, за 5 минут занизить показания. Каково же было всеобщее изумление, когда автор, осмотрев все пломбы, вместо планируемого способа, остановил выбор на пломбе термометра трубопровода подачи и сумел вывернуть термометр сопротивления, не нарушив пломбу. На всю операцию по занижению показаний узла учета ушло 2 минуты.

Наличие клавиатуры позволяет «зомбировать» программу вычислителя и управлять изменением показаний непосредственно с клавиатуры по только известным мошенникам командам. В первых разработках отечественных теплосчетчиков сетевое питание расходомера и вычислителя было раздельно. Отключение расходомера от сети не приводило к отключению счетчика наработки в вычислителе. До сих пор некоторые счетчики, установленные автором еще в 1994 г., работают в режиме несанкционированного занижения показаний, а теплосети компенсируют свои убытки ростом тарифов на энергию. Всякие программные ухищрения разработчиков в виде сигнализации аварий, как выяснилось, легко снимаются и никакой пользы, кроме проблем в эксплуатации, не дают.

6. Несбалансированный учет

При организации системы учета, включающей некоторое количество узлов учета, объединяемых в единую систему, наблюдается несбалансированность всей системы со значительным превышением результирующей погрешности, которую должна иметь вся система в целом. Например, ночью квартирный счетчик показывает количество израсходованной потребителем воды, а счетчик на вводе в многоквартирный жилой дом, например, вихревого типа, не реагирует на поток из-за наличия порогового значения расхода. Такой дисбаланс вроде бы «выгоден» жильцам дома, если не учитывать, что несбалансированный учет согласно стандартам на измерительные информационные системы и нормы точности является незаконным.

Выводы:

Таким образом, из всего вышесказанного напрашиваются первоочередные мероприятия по снижению неопределенности и искажения коммерческого учета ПЭР и их потерь :

Для повышения достоверности учетных измерений энергетических и природных ресурсов узлы учета должны проходить государственную поверку органами Госстандарта РФ непосредственно в местах эксплуатации без нарушения целостности узлов учета.

На стратегически важных магистралях транспортирования природных и энергетических ресурсов помимо метрологического контроля должен осуществляться контроль налоговый (балансный) с использованием портативных калибраторов, средств связи, компьютеров, методов статистической обработки и других инструментов выявления сверхнормативных потерь.

Контроль узлов учета, своеобразно толкуемый и фактически осуществляемый энергетиками, незаконен, приносит огромные ежегодные убытки потребителям ресурсов и казне в виде недобора продуктов, налогов, таможенных сборов и наличия потерь (до 100 млрд $ ежегодно), мешает техническому прогрессу. Незаконные действия целесообразно из Правил учета и повседневной практики исключить и привести в соответствие со стандартами и основами метрологии измерительных информационных систем.

Необходимо импортировать к узлам учета известные, в первую очередь налоговые и таможенные, требования по защите грузов и коммерческой информации от несанкционированного доступа. Специфичные методы и средства защиты должны пройти сертификационные испытания.

Литература

1.Андреев И. П. Типичные ошибки организации коммерческого теплоучета. Энергетическая эффективность, ЦЭНЭФ, 1995, № 9.

2.Андреев И. П. Инструментальное обследование и выявление дефектов городских систем тепловодоучета. Энергетическая эффективность, ЦЭНЭФ,1998, №21, с. 20-22.

3.Андреев И.П. О метрологическом обеспечении уз-

лов учета энергоресурсов. Доклад на НТК Госстандарта РФ, протокол № 10 от27.06.00 г.

4.Андреев И. П. Портативные калибраторы для отбраковки, наладки, оперативного и метрологического контроля, сертификации систем товарного трубопроводного учета энергетических и природных ресурсов и оказания услуг по устранению дефектов учета. Проект, победивший по итогам Российского конкурса инновационных проектов «Наука-технология-производство»

| скачать бесплатно Искажение приборного учета энергетических и природных ресурсов и борьба с ним , Андреев И.П.,

Ответы на поисковые запросы посетителей сайта: как снимают показания теплосчётчика, как правильно снимать показания с теплосчетчика, как считается тепло по теплосчетчику. Разберем 2а варианта:


а) Вы снимаете показания сами, вручную, т.е. просто переписываете значения в .

Сейчас в этом необходимости нет (если только для своего самоуспокоения). Новые – журнал учета отменили. Хорошо это или плохо. Хорошо, что качество теплосчетчиков увеличилось на столько, что необходимость ведения журнала отпала, все данные в любой момент можно считать прямо из теплосчетчика напрямую или через флэш накопитель, компьютер или ноутбук.

Плохо, если у вас старый теплосчетчик. С этого года он вне закона, а это значит жить ему до следующей госповерки, после чего теплосчетчик в обязательном порядке придется заменить.

Если же вы все таки желаете снимать показания, для себя, в ручную для этого изучите руководство по эксплуатации Вашего теплосчетчика — раздел обслуживания теплосчетчика, или инструкцию по эксплуатации – обязательное приложение к проекту узла учета тепловой энергии.

Причем показания необходимо снимать обязательно в одно и тоже время. Время съема устанавливаете сами, как Вам удобно, мы рекомендуем утренние часы. учета и также является обязательным приложением к проекту.

Какие величины для съема обязательны, зависит от конкретного узла. Как правило, это температура в подающем и обратном трубопроводе, расход теплоносителя в подающем и обратном трубопроводе – лучше в (т), количество полученной тепловой энергии – величина может быть в любых единицах – Гкал, МВт, кДж.

На счетчиках отечественного производства эти величины выглядят так – Гкал; МВт; кДж; импортных kW (kWh-текущие); MW; MJ или GJ.

Для тепловых сетей всё равно. Они сами пересчитают на Гкал. Вам для проверки рекомендую скачать или запомнить что 1Гкал это 1,163 МВт (MW) или 4,187 ГДж (GJ). Последней обязательной величиной является время работы прибора учета или наработка.

б) Вы снимаете показания сами, (правила этого не запрещают) с помощью технических средств – накопительный пульт, принтер, ноутбук. Самым приемлемым для Вас является, конечно, принтер — с ним Вы совершите меньше всего ошибок.

Как снимать опять же есть в «инструкции» — приложение к проекту. Я бы конечно Вам порекомендовал нанять специалистов. Почему – .

Если наймете специалистов, для контроля положите в щит с теплосчетчиком небольшой блокнот, где они будут для Вас записывать дату съема показаний и количество тепловой энергии на момент снятия. Это ваше требование озвучьте заранее, до заключения договора, иначе они имеют полное право отказаться.

Анализируя записи показаний Вы легко проконтролируете сумму, выставленную Вам за тепло тепловыми сетями. И обязательно чтобы показания они сами передавали в тепловые сети, иначе зачем они Вам. Как говорил мой первый мастер, такую работу может сделать и обезьяна, если её научить нажимать на кнопки.

И последнее замечание, никогда не пытайтесь экономить тепло с помощью обмана. При современных методах контроля, всё очень легко контролируемо. Наказание судебные издержки и оплата в пятикратном размере. Лучшая экономия это .

Как правильно снять показания прибора учета kwh 1985 года выпуска;

Читайте чуть выше — раздел «а» . Теплосчетчик 1985 года я бы рекомендовал заменить, поскольку уже в 1995 году, после выхода правил учета тепловой энергии и теплоносителя, он им перестал соответствовать, а новым правилам он не соответствует тем более, и страшнее всего, что считает неизвестно что.

По опыту эксплуатации теплосчетчики 1998-99 года госповерку не проходят – не соответствуют заявленным параметров в связи с износом. Хотя бывают и индивидуумы, так манометры 1961 года выпуска проходят госповерку без дополнительных регулировок, а новые из коробки её не проходят. Всё зависит от производителя.

В чём рассчитывается тепло;

Количество полученной тепловой энергии рассчитывается в Гкал. К расчету тепловыми сетями принимается в любых величинах – это может быть – Гкал, МВт, кДж, ГДж.

На счетчиках отечественного производства эти величины выглядят так – Гкал; МВт; кДж; Импортных kW; MW; MJ или GJ. Для тепловых сетей в каких величинах Вы передатите данные всё равно. Они сами пересчитают на Гкал.

1Гкал это 1,163 МВт (MW) или 4,187 ГДж (GJ).

Экономия тепла с помощью УУТЭ.

Требуется ли СРО (лицензия по старому) на установку теплосчетчиков;

Да, ответ однозначный. Кроме этого специалисты компании устанавливающей приборы обязаны иметь первичное обучение и действующую аттестацию в органах технического надзора. Поэтому если Вы руководитель заключающий договор, проверьте аттестационные документы у подрядчика заранее. Иначе Ваш теплосчетчик так ни когда и не станет коммерческим.

Как установить теплосчетчик самому;
Имею ли я право установить теплосчетчик самостоятельно;

Как следует из выше сказанного, нельзя, и более того я не советую Вам за это браться. Правила установки теплосчетчиков разных производителей очень сильно отличаться друг от друга. Даже если Вы теплотехник, метролог, инженер КИП, сварщик, электрик, сантехник, в одном лице, что мало вероятно, Вам придется вспомнить или изучить все правила, ГОСТы, СНиПы и также руководства по установке данного теплосчетчика. Стоимость услуг на данном рынке сейчас упала. А область теплоснабжения настолько сложная, что знаний и опыта не хватает порою даже специалистам. Моё личное мнение, нам давно пора забыть коммунистические времена и зарабатывать деньги, там, где мы работаем. Благо сейчас это не запрещено. Без обид. Я сам такой как Вы. Воспитан во времена коммунистов, умею делать всё лучше современных «специалистов». За что меня постоянно ругают дети.

Как рассчитывается показания теплосчетчиков;

К расчету принимается:
— количество тепловой энергии полученное по теплосчетчику.
— количество тепла затраченное на подпитку системы отопления, если в системе отопления имелась утечка. При этом обязательно учитывается возможная погрешность расходомеров и разрешенная нормативная утечка воды из системы отопления.
— потери тепловой энергии до приборов учета в соответствии с договором.
Эти данные суммируется и умножаются на стоимость 1 Гкал.

Как проверить, правильно ли начислена оплата за тепло по теплосчетчику;

Посчитайте разницу, величина Q — количество потребленной тепловой энергии между последней и предпоследней отчетными датами. Так как, например, если бы это был электросчетчик.
Переведите показания вашего теплосчетчика в Гкал.
Для этого если у Вас Q в MW умножьте на 0,8598 если в GJ умножьте на 0,2388 получите величину в Гкал.
Прибавьте величину договорных потерь, если они имеются. Потери должны быть оговорены в договоре и расписаны по месяцам.
Перемножьте полученное количество тепла на стоимость 1Гкал.
Если данная величина отличается, от выставленной Вам проверьте, не было ли у Вас утечки воды из системы отопления. Для этого посмотрите показания расхода, параметр G в (т) также как в случае с Q по отчетным датам. Если данные не отличаются больше чем на 2%, (для закрытых систем отопления), в некоторых тепловых сетях принимают 4%, 2% погрешность одного расходомера, 4% соответственно 2х расходомеров – расходомеры это приборы которые считают количество воды прошедшее через вашу систему отопления или горячего водоснабжения. Если отличаются, значит, Вам начислили дополнительную стоимость за водоразбор из системы отопления.
Считается так. Величину водоразбора, (с учетом погрешности приборов) в (т) умножают на разницу температур между обратным трубопроводом и температурой холодной воды за данный период. Получают величину в Гкал, которую прибавляют к потребленному Вами теплу. Данные обычно округляют до целых величин, остаток переносится на следующий отчетный период.
Проверили, можете теперь идти спорить или спать спокойно. Я всегда за контроль, потому, что ошибки встречаются часто, как по вине людей, так и по вине программистов, пишущих программы для отчетов.

Хотя счетчик тепла является устройством функционально более простым, чем современный мобильный телефон, у потребителей часто возникают вопросы относительно снятия расчетных показаний потребленной тепловой энергии.

Также у многих появляються проблемы с интерпретацией других, выводимых на дисплей, данных.

Прежде всего, перед считыванием данных со счетчика настоятельно рекомендуем изучить паспорт прибора, так как в нем Вы найдете ответы на большинство вопросов, связанных с техническими характеристиками, функциональными особенностями и обслуживанием счетчика. При этом особое внимание стоит обратить разделу, посвященному работе с меню счетчика, так как от этого зависит правильность данных, которые Вы передаете теплоснабжающей организации, а также ваша возможность установить оптимальный режим потребления.
Рассмотрим основные разделы меню, на примере счетчиков Ultrameter (ООО «Сенсей групп», Украина) и CF-UltraMaXX, Integral MaXX (Itron inc., Германия), которые реализует наша компания.

Считывание показаний потребленной тепловой энергии.

В наших счетчиках значение потребленной тепловой энергии, которое Вам необходимо вносить в платежку, либо передавать поставщику услуг теплоснабжения, находится в самом начале первого уровня меню и появляется сразу же после активации дисплея (См. Рисунки 1 и 2).
Счетчики Ultrameter ведут учет в гигакалориях (Гкал), а счетчики CF-UltraMaXX и Integral MaXX – в киловатт-часах (кВтч).
По заказу, счетчики тепла Ultrameter могут быть запрограммированы на учет в кВтч, а счетчики CF-UltraMaXX – в гигаджоулях (ГДж), но поскольку подобным запросов мы не получали, то приборы в такой конфигурации не поставлялись.

К тому же, наиболее удобными для потребителя в Украине являются счетчики, которые ведут учет тепла в гигакалориях, так как отечественные теплоснабжающие предприятия предпочитают принимать показания именно в этих единицах.
Если счетчик ведет учет тепла в других единицах, то перевести показания в гигакалории Вы можете в соответствии со следующими соотношениями:

1000 кВт/ч = 1 МВтч = 0,86 Гкал;

1 ГДж = 0.24 Гкал

К примеру:

Счетчик тепла насчитал 3250 кВт/ч, что в переводе в Гкал составит:

3250 * 0,86 = 0,396 Гкал. 2,795 Гкал.

Счетчик тепла насчитал 1,650 ГДж, что в переводе в Гкал составит:

1,650 * 0,24 = 0,396 Гкал. 0,396 Гкал.



Рисунок 1 – Дисплей счетчиков CF- UltraMaXX.



Рисунок 2 – Дисплей счетчиков UltraMeter

Считывание значений расхода, температур и мощности.

Значения расхода, мощности и температуры являются сервисными: они не используются для взаиморасчетов с поставщиком услуг, но позволяют увидеть, в каком режиме происходит потребление, настроить его оптимальный режим или же выявить внештатную ситуацию работы прибора учета тепла (неправильная установка расходомера или датчиков температуры, аномальные значения температур либо расхода и т.д.).

Для этого сначала разберемся с навигацией в меню счетчиков. В CF UltraMaXX предусмотрено 3 уровня пользователя (1 – Расчетные данные; 2 – Архивные данные; 3 – Текущие значения), в Ultrameter – 4 (А1 – Расчетные данные и текущие показания; А2 – Архивные данные; А3 – Настройка даты и времени; А4 – режим поверки). Переход между уровнями осуществляется 2-х секундным, а внутри уровня – кратковременным, менее 2-х секунд, нажатием кнопки. При этом, в CF UltraMaXX текущий уровень постоянно отображается в верхнем правом углу (см. Рисунок 1), а в UltraMeter — появляется при переходе в соответствующий уровень.

    Интересующие нас значения находятся:

  • CF UltraMaXX – на 3-м уровне:

    Параметр

    Единица измерения

    Расход теплоносителя, f

    Тепловая мощность, P

    Температура в подающем трубопроводе, Т вх

    Температура в обратном трубопроводе, Т вых

    Разница температур, ΔT = (Т вх - Т вых)

    Другие сервисные данные: наработка счетчика серийный номер и т.д.

На что нужно обратить внимание, рассматривая значения данных параметров:

Значение параметров

Определение

ΔT = (-3 …0) °С если

f = 0 м 3 /ч,

ΔT = >0 °С если

f > 0 м 3 /ч

Небольшая негативная разница температур при отсутствии расхода (перекрытом кране на входе). При подаче расхода ΔT переходит в положительную зону.

Ситуация на первый взгляд странная, но не является аварийной. Возникает в тех случаях, когда перекрывают кран на входе системы, а на выходе оставляют открытым. Таким образом, вода с общего обратного стояка может попадать на датчик температуры на выходе системы.

Особо волноваться в данной ситуации не стоит.

ΔT < 0 °C и

f > 0 м 3 /ч.

Негативная разница температур при наличии расхода

Скорее всего, счетчик установлен неправильно: перевернут расходомер (против направления потока) либо датчики температуры перепутаны местами.

Необходимо обратиться в организацию, осуществившую установку счетчика.

ΔT > 30 °C

Очень высокое значение потери температуры.

Для квартирного учета такое высокое значение ΔT весьма нетипично: большую часть времени потребление происходит при значении ΔT < 20°C . Даже в случае сильных морозов, когда поставщики резко повышают температуру теплоносителя (Т вх ), в нормальном режиме работы ΔT не превышает 30 °C .

Скорее всего, ничего страшного, но лучше проследить за работой счетчика и перезвонить техническому специалисту (см. номера ниже)

В данной статье мы осветили только небольшую часть информации, касательно работы счетчиков, а также некоторых нештатных (аварийных) ситуаций. В ближайшее время, приведем примеры реальных режимов потребления с соответствующими графиками, и детально разберем, какие из них являются наиболее экономными.

Если у Вас есть вопросы, относительно работы – будем рады на них ответить!

Если на вашем объекте - жилом многоквартирном доме, либо общественном здании юридического лица уже стоит теплосчетчик, как можно добиться успеха в экономии потребления тепловой энергии? На этот вопрос мы Вам можем подсказать следующее - необходимо поставить автоматическую систему погодного регулирования. Наша компания имеет опыт установки данных систем в Приморском крае. Но необходимо отметить, что данная система является более дорогим удовольствием, чем установка теплосчетчика. В статье приведенной ниже описывается методика работы данной системы, выбор остается за Вами.

РЕГУЛИРОВАНИЕ ТЕПЛОПОТРЕБЛЕНИЯ ЗДАНИЙ - РЕАЛЬНАЯ ЭКОНОМИЯ ТЕПЛА

С. Н. Ещенко, к.т.н., технический директор ЗАО «ПромСервис», г. Димитровград

Известно, что при организации приборного коммерческого учета потребленного тепла нередко уменьшаются платежи за теплоэнергию только лишь из-за того, что указанное в Договоре с теплоснабжающей организацией количество тепла не совпадает с реально потребленным. Однако, снижение платежей - не экономия тепла, а экономия денег. Реальная экономия энергии наступает тогда, когда каким-либо образом происходит ограничение ее потребления.

1. От чего зависит потребление энергии?

Потребление энергии, прежде всего, обусловлено потерями зданием тепла и направлено на их компенсацию, чтобы поддержать желаемый уровень комфорта.

Теплопотери зависят:

  • от климатических условий окружающей среды;
  • от конструкции здания и от материалов, из которых они изготовлены;
  • от условий комфортной среды.

Часть потерь компенсируется внутренними источниками энергии (в жилых зданиях это работа кухни, бытовых приборов, освещения). Остальная часть потерь энергии покрывается системой отопления. Какие потенциальные действия можно предпринять по уменьшению потребления энергии?

  1. ограничение потерь тепла путем снижения теплопроводности ограждающих конструкций здания (герметизация окон, утепление стен, крыш);
  2. поддержание подходящей постоянной, комфортной температуры в помещении только тогда, когда там находятся люди;
  3. снижение температуры в ночное время или в период, когда в помещении нет людей;
  4. улучшение использования «свободной энергии» или внутренних источников тепла.

2. Что такое благоприятная комнатная температура?

По оценкам специалистов, ощущение «удобной температуры» связано с возможностью тела избавиться от энергии, производимой им.

При нормальной влажности ощущение «удобной теплоты» соответствует температуре около +20°С. Это среднее между температурой воздуха и температурой внутренней поверхности окружающих стен. В плохо изолированном здании, стены которого на внутренней поверхности имеют температуру +16°С, воздух должен быть нагрет до температуры +24°С, чтобы получить благоприятную температуру в комнате.

Ткомф = (16 + 24) / 2 = 20°C

3. Системы отопления подразделяются на:

закрытые, когда теплоноситель проходит в здании только через приборы отопления и используется только на нужды нагрева; открытые, когда теплоноситель используется для отопления и для нужд горячего водоснабжения. Как правило, в закрытых системах отбор теплоносителя на какие-либо нужды запрещен.

4. Система радиаторов

Системы радиаторов бывают однотрубные, двухтрубные и трехтрубные. Однотрубные - используются, в основном, в бывших республиках СССР и в Восточной Европе. Разработаны для упрощения системы труб. Существует великое множество однотрубных систем (с верхней и нижней разводкой), с перемычками или без них. Двухтрубные - уже появились в России, а ранее имели распространение в странах Западной Европы. Система имеет одну подающую и одну отводящую трубу, а каждый радиатор снабжается теплоносителем с одинаковой температурой. Двухтрубные системы легко регулировать.

5. Качественное регулирование

Существующие в России системы теплоснабжения проектируются на постоянный расход (так называемое качественное регулирование). Отопление базируется на системе с зависимым присоединением к магистралям с постоянным расходом и гидроэлеватором, который уменьшает статическое давление и температуру в трубопроводе к радиаторам путем смешения обратной воды (в 1,8 - 2,2 раза) с первичным потоком в подающем трубопроводе. Недостатки:

  • невозможность учета реальной потребности в тепле конкретного здания в условиях колебания давления (или перепада давления между подачей и обраткой);
  • управление по температуре идет из одного источника (тепловая станция), что приводит к перекосам при распределении тепла во всей системе;
  • большая инерционность систем при центральном регулировании температуры в подающем трубопроводе;
  • в условиях нестабильности давления в поквартальной сети гидроэлеватор не обеспечивает надежную циркуляцию теплоносителя в системе отопления.

6. Модернизация систем отопления

Модернизация систем отопления включает в себя следующие мероприятия:

  1. Автоматическое регулирование температуры теплоносителя на вводе в здание, в зависимости от температуры наружного воздуха с обеспечением насосной циркуляции теплоносителя в системе отопления.
  2. Учет количества потребленного тепла.
  3. Индивидуальное автоматическое регулирование теплоотдачи отопительных приборов путем установки на них термостатических вентилей.

Рассмотрим подробно первый пункт мероприятий.

Автоматическое регулирование температуры теплоносителя реализуется в автоматизированном узле управления. Существует достаточно много разновидностей схем построения узла. Это обусловлено конкретными конструкциями здания, системы отопления, различными условиями эксплуатации.

В отличие от элеваторных узлов, устанавливаемых на каждой секции здания, автоматизированный узел целесообразно устанавливать один на здание. С целью минимизации капитальных затрат и удобства размещения узла в здании, максимальная рекомендуемая нагрузка на автоматизированный узел не должна превышать 1,2 - 1,5 Гкал/час . При большей нагрузке рекомендуется устанавливать сдвоенные, симметричные или несимметричные по нагрузке узлы.

Принципиально, автоматизированный узел состоит из трех частей: сетевой, циркуляционной и электронной.

  • Сетевая часть узла включает в себя клапан регулятора расхода теплоносителя, клапан регулятора перепада давления с пружинным регулирующим элементом (устанавливается по необходимости) и фильтры.
  • Циркуляционная часть состоит из циркуляционного насоса и обратного клапана (если клапан необходим).
  • Электронная часть узла включает регулятор температур (погодный компенсатор), обеспечивающий поддержание температурного графика в системе отопления здания, датчик температуры наружного воздуха, датчики температур теплоносителя в подающем и обратном трубопроводах и редукторный электропривод клапана регулирования расхода теплоносителя.

Контроллеры отопления были разработаны в конце 40-х годов XX века и, с тех пор, принципиально отличается лишь их исполнение (от гидравлических, с механическими часами, до полностью электронных микропроцессорных устройств).

Основная идея, заложенная в автоматизированный узел - поддержание отопительного графика температуры теплоносителя, на который рассчитана система отопления здания, независимо от температуры наружного воздуха. Поддержание температурного графика наряду с устойчивой циркуляцией теплоносителя в системе отопления осуществляется путем подмеса необходимого количества холодного теплоносителя из обратного трубопровода в подающий с помощью клапана с одновременным контролем температуры теплоносителя в подающем и обратном трубопроводах внутреннего контура системы отопления.

Совместная деятельность сотрудников ЗАО «ПромCервис» и ПКО «Прамер» (г. Самара) в области разработки контроллеров отопления привела к созданию прототипа специализированного контроллера , на базе которого в 2002 году был создан узел регулирования теплоснабжения административного здания ЗАО «ПромСервис» для отработки алгоритмической, программной и аппаратной частей управляющего системой контроллера.

Контроллер представляет собой микропроцессорный прибор, способный автоматически управлять тепловыми узлами, содержащими до 4 контуров отопления и горячего водоснабжения.

Контроллер обеспечивает:

  • счет времени работы прибора с момента включения (с учетом сбоя питания не более двух суток);
  • преобразование сигналов подключенных преобразователей температуры (термометров сопротивления или термопар) в значения температуры воздуха и теплоносителя;
  • ввод дискретных сигналов;
  • генерацию управляющих сигналов для управления частотными преобразователями;
  • генерацию дискретных сигналов для управления реле (0 - 36 В; 1 А);
  • генерацию дискретных сигналов для управления силовой автоматикой (220 В; 4 А);
  • отображение на встроенном индикаторе значений параметров системы, а также значений текущих и архивных значений измеренных параметров;
  • выбор и настройку системных параметров управления;
  • передачу и настройку системных параметров работы по удаленным линиям связи.

Измеряя параметры системы, контроллер обеспечивает управление тепловым режимом здания, воздействуя на электропривод регулирующего клапана (клапанов) и, если это предусмотрено системой, на циркуляционный насос.

Регулирование реализуется по заданному температурному графику отопления с учетом реальных измеренных значений температур наружного воздуха и воздуха в контрольном помещении здания. При этом система автоматически производит коррекцию выбранного графика с учетом отклонения температуры воздуха в контрольном помещении от заданного значения. Контроллер обеспечивает снижение на заданную глубину тепловой нагрузки здания в заданный промежуток времени (режим выходного дня и ночной режим). Возможность ввода аддитивных поправок к измеряемым значениям температур позволяет адаптировать режимы работы системы регулирования к каждому объекту с учетом его индивидуальных характеристик. Встроенный двустрочный индикатор обеспечивает просмотр измеренных и заданных параметров посредством простого и понятного пользовательского меню. Архивные значения параметров можно просматривать как на индикаторе, так и передавать их на компьютер по стандартному интерфейсу. Предусмотрены функции самодиагностики системы и калибровки каналов измерения.

Узел учета и регулирования теплоснабжения административного здания ЗАО «ПромСервис» спроектирован и смонтирован летом 2002 года на закрытой системе отопления с нагрузкой до 0,1 Гкал/час с однотрубной системой радиаторов. Несмотря на относительно небольшие габариты и этажность здания, система отопления содержит некоторые особенности. На выходе из теплового узла система имеет несколько петель горизонтальной разводки на этажах. При этом существует разделение системы отопления на контуры по фасадам здания. Коммерческий учет потребленного тепла обеспечивается теплосчетчиком СПТ-941К, в составе которого: термометры сопротивления типа ТСП-100П; преобразователи расхода ВЭПС-ПБ-2; тепловычислитель СПТ-941. Для визуального контроля температуры и давления теплоносителя используются комбинированные стрелочные приборы Р/Т.

Система регулирования состоит из следующих элементов:

  • контроллера К;
  • поворотного клапана с электроприводом ПКЭ;
  • циркуляционного насоса Н;
  • датчиков температуры теплоносителя в подающем Т3 и обратном Т4 трубопроводах;
  • датчика температуры наружного воздуха Тн;
  • датчика температуры воздуха в контрольном помещении Тк;
  • фильтра Ф.

Датчики температуры необходимы для определения реальных текущих значений температур для принятия решения контроллером об управлении клапаном ПКЭ на их основе. Насос обеспечивает устойчивую циркуляцию теплоносителя в системе отопления здания при любом положении регулирующего клапана.

Ориентируясь на теплотехнические параметры системы отопления (температурный график, давление в системе, условия работы) в качестве регулирующего элемента был выбран поворотный трехходовой клапан HFE с электроприводом АМВ162 производства фирмы «Данфосс» . Клапан обеспечивает смешение двух потоков теплоносителя и работает при условиях: давление - до 6 бар, температура - до 110°С, что вполне соответствует условиям использования. Применение трехходового регулирующего клапана позволило отказаться от установки обратного клапана, традиционно устанавливаемого на перемычку в системах регулирования. В качестве циркуляционного насоса используется бессальниковый насос UPS-100 фирмы «Грундфос» . Датчики температуры - стандартные термометры сопротивления ТСП. Для защиты клапана и насоса от воздействия механических примесей используется магнитно-механический фильтр ФММ. Выбор импортного оборудования обусловлен тем, что перечисленные элементы системы (клапан и насос) зарекомендовали себя как надежное и неприхотливое в эксплуатации оборудование в достаточно тяжелых условиях. Несомненным преимуществом разработанного контроллера является то, что он способен работать и электрически стыкуется как с достаточно дорогим импортным оборудованием, так и позволяет использовать широко распространенные отечественные приборы и элементы (например, недорогие, по сравнению с импортными аналогами, термометры сопротивления).

7. Некоторые результаты эксплуатации

Во-первых. За период эксплуатации узла регулирования с октября 2002 г. по март 2003 г. не зафиксировано ни одного отказа какого-либо элемента системы. Во-вторых. Температура в рабочих помещениях административного здания поддерживалась на комфортном уровне и составила 21 ± 1 °С при колебаниях температуры наружного воздуха от +7°С до -35°С. Уровень температуры в помещениях соответствовал заданной, даже при условии подачи из теплосети теплоносителя с заниженной относительно температурного графика температурой (до 15°С). Температура теплоносителя в подающем трубопроводе менялась за это время в пределах от +57°С до +80°С. В-третьих. Применение циркуляционного насоса и балансировки контуров системы позволило достичь более равномерного теплоснабжения помещений здания. В-четвертых. Система регулирования позволила при соблюдении комфортных условий в помещениях здания снизить общее количество потребленного тепла. На этом следует остановиться подробнее. В табл.1 приведены значения измеренных теплосчетчиком объемов потребленного зданием тепла за различные месяцы со значительно отличающимися средними температурами наружного воздуха. За базу сравнения приняты значения количества потребленного тепла в отопительном сезоне 2001/2002 года, когда здание было оснащено только системой коммерческого учета потребления тепла (без регулирования).

Значение 26% получено сравнением с базовым значением 26,6 Гкал при средней температуре -12,6°С, что идет в запас результатов. Приведенные данные красноречиво показывают, что эффект от применения автоматического регулирования особенно значителен при температурах наружного воздуха выше -5°С. В то же время, и при достаточно низких средних температурах воздуха снижение теплопотребления заметно. Последняя строка табл.1 содержит данные о потреблении тепла с оптимально настроенным регулятором, поэтому при снижении средней температуры с -12,4°С до -15,9°С потребление тепла сократилось с 23,9 Гкал до 19,8 Гкал, что составляет 17%. Немаловажное значение имеет и то, что контроллер отслеживает изменение температуры воздуха на улице в течение дня, подавая в контур отопления здания теплоноситель с пониженной температурой, одновременно следя за температурой в помещении здания. Особенно актуально это в ясную погоду, со значительной амплитудой колебания температур ночью и днем. Поэтому ранней весной, несмотря на достаточно низкие ночные температуры, потребление тепла становится еще меньше.

Если рассмотреть изменение режима теплоснабжения в течение суток и недели при активированных функциях контроллера понижения температуры теплоносителя на подаче в ночные часы и выходные дни, то получается следующее. Контроллер позволяет эксплуатирующему персоналу выбирать длительность ночного режима и его «глубину», то есть величину понижения температуры теплоносителя относительно заданного температурного графика в заданный период времени исходя из особенностей здания, графика работы персонала и т.д. Например, эмпирическим путем нам удалось подобрать следующий ночной режим. Начало в 16 часов, окончание в 02 часа. Понижение температуры теплоносителя на 10°С. Какие же получились результаты? Снижение потребления тепла в ночной режим составляет 40 - 55% (зависит от температуры наружного воздуха). При этом температура теплоносителя в обратном трубопроводе снижается на 10 - 20 °С, а температура воздуха в помещениях - всего на 2-3°С. В первый час после окончания ночного режима начинается режим повышенного теплоснабжения «натоп», при котором потребление тепла относительно стационарного значения достигает 189%. Во второй час - 114%. С третьего часа - режим стационарный, 100%. Эффект экономии значительно зависит от температуры наружного воздуха: чем выше температура, тем сильнее выражен эффект экономии. Например, снижение теплопотребления при введении «ночного» режима при температуре наружного воздуха около -20°С составляет 12,5%. При повышении среднесуточной температуры эффект может достигать и 25%. Аналогичная, но еще более выгодная ситуация возникает при реализации режимов «выходного дня», когда задается понижение температуры теплоносителя на подаче в выходные дни. Нет необходимости поддерживать комфортную температуру во всем здании, если в нем никого нет.

Выводы

  1. Полученный опыт эксплуатации системы регулирования показал, что экономия потребляемого тепла при регулировании теплоснабжения, даже при несоблюдении температурного графика теплоснабжающей организацией, реальна и может достигать при определенных погодных условиях до 45% в месяц.
  2. Использование разработанного прототипа контроллера позволило упростить систему регулирования и снизить ее стоимость.
  3. В системах отопления с нагрузкой до 0,5 Гкал/час возможно использование достаточно простой и надежной семиэлементной системы регулирования, способной обеспечить реальную экономию средств, при сохранении комфортных условий в здании.
  4. Простота работы с контроллером и возможность задания с клавиатуры многих параметров позволяет оптимально настроить систему регулирования, исходя из реальных теплофизических характеристик здания и желаемых условий в помещениях.
  5. Эксплуатация системы регулирования в течение 4,5 месяцев показала надежную, устойчивую работу всех элементов системы.

ЛИТЕРАТУРА

  1. Контроллер РАНК-Э. Паспорт.
  2. Каталог автоматических регуляторов для систем теплоснабжения зданий. ЗАО «Данфосс». М., 2001 г., с.85.
  3. Каталог «Бессальниковые циркуляционные насосы». «Грундфосс», 2001 г.