Как изменяется скорость химической реакции. Влияние природы реагирующих веществ на скорость химической реакции

02.09.2020

Чтобы вещества прореагировали, необходимо, чтобы их молекулы столкнулись. Вероятность столкновения двух людей на оживленной улице гораздо выше, чем на пустынной. Так и с молекулами. Очевидно, что вероятность столкновения молекул на рисунке слева выше, чем справа. Она прямо пропорциональна количеству молекул реагентов в единице объема, т.е. молярным концентрациям реагентов. Это можно продемонстрировать с помощью модели.

В середине XIX в. (1865 г. - Н.Н.Бекетов, 1867 г. - К.Гульдберг, П.Вааге) был сформулирован основной постулат химической кинетики, называемый также законом действующих масс :

Числа n, m в выражении закона действующих масс называются порядками реакции по соответствующим веществам. Это экспериментально определяемые величины. Сумма показателей степеней n , m называется общим порядком реакции .

Обратите внимание, что степени при концентрациях А и В в общем случае не равны стехиометрическим коэффициентам в реакции! Они становятся численно равными только в том случае, если реакция протекает именно так, как записывается (такие реакции называются простыми или элементарными и достаточно редки). В большинстве случаев уравнение реакции отражает лишь суммарный результат химического процесса, а не его механизм.

Коэффициент пропорциональности k называется константой скорости реакции . Значение константы скорости реакции постоянно для данной реакции при данной температуре.

*В закон действующих масс не входят концентрации твердых веществ, т.к. реакции с твердыми веществами протекают на их поверхности, где "концентрация" вещества постоянна.

C тв +O 2 =CO 2 , v=k[C] m n =k" n ; k"=k[C] m

Влияние давления на скорость химической реакции.

Давление сильно влияет на скорость реакций с участием газов, потому что оно непосредственно определяет их концентрации.

В уравнении Менделеева-Клапейрона:

pV = n RT

перенесем V в правую часть, а RT - в левую и учтем, что n /V = c :

p/RT = c

Давление и молярная концентрация газа связаны прямо пропорционально. Поэтому в закон действующих масс мы можем подставлять вместо концентрации p/RT.

Влияние давления на скорость химической реакции. (Дополнительный материал).

Цепные реакции включают в свой механизм множество последовательно повторяющихся однотипных элементарных актов (цепь).

Рассмотрим реакцию:

H 2 + Cl 2 = 2HCl

Она состоит из следующих стадий, общих для всех цепных реакций:

1) Инициирование , или зарождение цепи

Cl 2 = 2Cl·

Распад молекулы хлора на атомы (радикалы) происходит при УФ-облучении или при нагревании. Сущность стадии инициирования - образование активных, реакционноспособных частиц.

2) Развитие цепи

Cl· + H 2 = HCl + H· H· + Cl 2 = HCl + Cl·

В результате каждого элементарного акта развития цепи образуется новый радикал хлора, и эта стадия повторяется вновь и вновь, теоретически - до полного расходования реагентов.

3) Рекомбинация , или обрыв цепи

2Cl· = Cl 2 2H· = H 2 H· + Cl· = HCl

Радикалы, оказавшиеся рядом, могут рекомбинировать, образуя устойчивую частицу (молекулу). Избыток энергии они отдают "третьей частице" - например, стенкам сосуда или молекулам примесей.

Рассматриваемая цепная реакция является неразветвленной , поскольку в элементарном акте развития цепи количество радикалов не возрастает . Цепная реакция взаимодействия водорода с кислородом является разветвленной , т.к. число радикалов в элементарном акте развития цепи увеличивается :

H· + O 2 = OH· + O· O· + H 2 = OH· + H· OH· + H 2 = H 2 O + H·

К разветвленным цепным реакциям относятся многие реакции горения.Неконтролируемый рост числа свободных радикалов (как в результате разветвления цепи, так и для неразветвленных реакций в случае слишком быстрого инициирования) может привести к сильному ускорению реакции и взрыву.

Казалось бы, чем больше давление, тем выше концентрация радикалов и вероятнее взрыв. Но на самом деле для реакции водорода с кислородом взрыв возможен лишь в определенных областях давления: от 1 до 100 мм рт.ст. и выше 1000 мм рт.ст. Это следует из механизма реакции. При малом давлении большая часть образующихся радикалов рекомбинирует на стенках сосуда, и реакция идет медленно. При повышении давления до 1 мм рт.ст. радикалы реже достигают стенок, т.к. чаще вступают в реакции с молекулами. В этих реакциях радикалы размножаются, и происходит взрыв. Однако при давлении выше 100 мм рт.ст. концентрации веществ настолько возрастают, что начинается рекомбинация радикалов в результате тройных соударений (например, с молекулой воды), и реакция протекает спокойно, без взрыва (стационарное течение). Выше 1000 мм рт.ст. концентрации становятся очень велики, и даже тройных соударений оказывается недостаточно, чтобы предотвратить размножение радикалов.

Вам известна цепная разветвленная реакция деления урана-235, в каждом элементарном акте которой захватывается 1 нейтрон (играющий роль радикала) и испускается до 3 нейтронов. В зависимости от условий (например, от концентрации поглотителей нейтронов) для нее также возможно стационарное течение или взрыв. Это еще один пример корреляции кинетики химических и ядерных процессов.

Влияние концентрации на скорость химической реакции

Зависимость скорости реакции от концентрации реагирующих веществ сформулирована в законе действующих масс : При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их стехиометрическим коэффициентам”

Например: для реакции mA + nB → pAB

математическое выражение закона действующих масс:

υ = k [A] m ∙ [B] n (иначе– кинетическое уравнение реакции),

где [A] и [B] концентрации реагирующих веществ А и В; m и n – стехиометрические коэффициенты; k – коэффициент пропорциональности, названный константой скорости.

Физический смысл константы скорости заключается в том, что при концентрациях реагирующих веществ равных 1,0 моль/л([A]=[B] = 1моль/л), скорость химической реакции равна константе скорости (υ=k). Константа скорости зависит только от природы реагирующих веществ и от температуры, но не зависит от концентрации веществ.

Математическая запись закона действующих масс для гомогенных и гетерогенных систем имеет некоторые отличия. Для гетерогенных реакций в кинетическое уравнение входят концентрации только тех веществ, которые находятся в системе в растворе или в газовой фазе. Концентрация же веществ, находящихся в твердом состоянии на поверхности в течение реакции остается постоянной, поэтому ее величина учитывается в константе скорости реакции.

Например: для гомогенной реакции 2H 2(г) + O 2(г) = 2H 2 O (г)

выражение закона: υ = k ∙ 2 ∙ ;

для гетерогенной реакции С (тв) +O 2(г) =СО 2(г)

выражение закона υ = k эф ∙ ,

где: k эф – эффективная константа скорости, равная k ∙ [С тв ]

Задача

Как изменится скорость реакции 2H 2(г) + O 2(г) = 2H 2 O (г) при увеличении концентрации исходных веществ в два раза?

Решение

Зависимость скорости реакции от концентрации (кинетическое уравнение) запишется: υ = k ∙ 2 ∙

Если концентрации исходных веществ увеличить в 2 раза, то кинетическое уравнение имеет вид: υ" = k ∙ 2 ∙ , тогда υ"/υ = 8 – скорость данной реакции возросла в 8 раз.

Зависимость скорости реакции от давления описывается выражением аналогичным закону действующих масс, где вместо концентраций веществ используют парциальные давления реагирующих газов.

Например: для реакции 2H 2(г) + O 2(г) = 2H 2 O (г) зависимость скорости реакции от давления запишется: υ = k ∙ Р H 2 2 ∙ Р O 2

Задача

Как изменится скорость реакции, если общее давление в системе CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г), если общее давление в системе уменьшить в 5 раз?



Решение

Зависимость скорости реакции от давления запишется:

υ = k ∙ Р CH 4 ∙Р 2 O 2 . При уменьшении общего давления в системе уменьшится парциальное давления каждого газа, то есть υ" = k ∙ Р CH 4 /5 ∙(Р O 2 /5) 2 . Тогда υ"/υ = 1/5∙5 2 =1/125 - скорость реакции уменьшилась в 125 раз

При записи кинетического уравнения реакции для газообразных систем вместо концентрации (С) пишут давление (Р) реагентов, так как изменение давления в системе аналогично изменению концентрации. Увеличение давления в системе вызывает уменьшение объема системы во столько же раз, при этом концентрация реагентов в единице объема увеличивается так же. При уменьшении давления происходит увеличение объема системы, при этом концентрации в единице объема уменьшится соответственно.

Примеры и решения задач.

Пример 1.

Скорость какой реакции больше, если за единицу времени в единице объема образовалось в результате первой реакции 9г водяного пара, в результате второй реакции – 3,65г хлористого водорода?

Скорость реакции измеряется количеством молей вещества, которое образуется в единице объема за единицу времени. Молярная масса воды молярная масса хлористого водорода тогда скорость первой реакции,

Моль/л×с,

а скорость второй реакции

будет моль/л.

Скорость образования водяных паров больше, так как число молей образования водяного пара больше, чем число молей образования хлористого водорода.

Пример 2.

Реакция между веществами А и В выражается уравнением: А+2В®С. Начальная концентрация вещества А равна 0,3 моль/л, а вещества В–0,5 моль/л. Константа скорости равна 0,4. Определить скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшается на 0,1 моль/л.

Концентрация вещества А уменьшилась на 0,1 моль/л. Следовательно, исходя из уравнения реакции, концентрация вещества В уменьшилась на 0,2 моль/л, так как перед веществом В стоит коэффициент 2. Тогда концентрация вещества А через некоторое время станет равной 0,3-0,1=0,2 моль/л, а концентрация В – 0,5-0,2=0,3 моль/л.

Определяем скорость реакции:

Моль/л×с

Пример 3.

Как изменится скорость реакции: если увеличить концентрацию NO в 3 раза? Согласно закону действующих масс запишем выражение для скорости реакции:

.

При увеличении концентрации NO в 3 раза скорость реакции будет:



Скорость реакции увеличится в 9 раз.

Пример 4.

Определите, как изменится скорость реакции, если увеличить давление в системе в 2 раза.

Увеличение давления в системе в 2 раза вызовет уменьшение объема системы в 2 раза, при этом концентрации реагирующих веществ возрастут в 2 раза.

Согласно закону действующих масс запишем начальную скорость реакции и при увеличении давления в 2 раза:

, .

Скорость реакции увеличится в 8 раз.

Пример 5.

Рассчитайте исходные концентрации веществ А и В в системе А+3В=2С, если равновесные концентрации веществ А равна 0,1 моль/л, веществ В равна 0,2 моль/л, вещества С–0,7 моль/л.

Находим концентрацию вещества А, израсходованную на реакцию, составляя пропорцию по уравнению реакции:

2 моль/л С получено из 1 моль/л А,

0,7 моль/л С ®х моль /л × А.

моль/л А.

Следовательно, исходная концентрация вещества А равна:

0,1 + 0,35 = 0,45 моль/л.

Находим концентрацию вещества В, израсходованную на реакцию.

Составляем пропорцию по уравнению реакции:

2 моль/л С получено из 3 моль/л В

0,7 моль/л С ® х моль/л В

х= моль/л А.

Тогда исходная концентрация вещества В равна:

моль/л.

Пример 6.

При температуре 40 0 С образовалось 0,5 моль/л вещества А. Сколько моль/л А образуется, если повысить температуру до 80 0 С? Температурный коэффициент реакции равен 2.

По правилу Вант-Гоффа запишем выражение скорости реакции при 80 0 С:

.

Подставив в уравнение данные задачи, получим:

При 80 0 С образуется 8 моль/л вещества А.

Пример 7.

Рассчитайте изменение константы скорости реакции, имеющей энергию активации 191 кДж/моль, при увеличении температуры от 330 до 400 К.

Запишем уравнение Аррениуса для условия задачи:

где R – универсальная газовая постоянная, равная 8,32 Дж/к(К×моль).

откуда изменение константы скорости будет:

Контрольные задания

61. Скорость химической реакции

2NO(г) + O2(г) = 2NO2(г)

при концентрациях реагирующих веществ =0,3 моль/л и =0,15 моль/л составила 1,2·10-3 моль/(л·с). Найдите значение константы скорости реакции.

62. На сколько градусов следует повысить температуру системы, чтобы скорость протекания в ней реакции возросла в 30 раз (=2,5)?

63. Во сколько раз следует увеличить концентрацию оксида углерода в системе

2СО = СО2+ С,

чтобы скорость реакции увеличилась в 4 раза?

64. Во сколько раз следует увеличить давление, чтобы скорость реакции образования NО2по реакции

возросла в 1000 раз?

65. Реакция идет согласно уравнению

2NO(г) + Cl2(г) = 2NOCl(г).

Концентрации исходных веществ до начала реакции составляли: =0,4 моль/л; =0,3 моль/л. Во сколько раз изменится скорость реакции по сравнению с первоначальной в тот момент, когда успеет прореагировать половина оксида азота?

66. Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40, если =3,2?

67. Напишите выражение для скорости химической реакции, протекающей в гомогенной системе по уравнению

и определите, во сколько раз увеличится скорость этой реакции, если:

а) концентрация А уменьшится в 2 раза;

б) концентрация А увеличится в 2 раза;

в) концентрация В увеличится в 2 раза;

г) концентрация обоих веществ увеличится в 2 раза.

68. Во сколько раз следует увеличить концентрацию водорода в системе

N2 + 3H2= 2NН3,

чтобы скорость реакции возросла в 100 раз?

69. Вычислите температурный коэффициент скорости реакции, если константа скорости ее при 100 С составляет 0,0006, а при 150 С 0,072.

70. Реакция между оксидом азота (II) и хлором протекает по уравнению

2NO + Cl2= 2NOCl.

Как изменится скорость реакции при увеличении:

а) концентрации оксида азота в 2 раза;

б) концентрации хлора в 2 раза;

в) концентрации обоих веществ в 2 раза?

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Примеры решения задач

Химическим равновесием называется такое состояние системы, при котором скорости прямой и обратной химических реакций равны, и концентрации реагирующих веществ не изменяются с течением времени.

Количественной характеристикой химического равновесия является константа равновесия. Константа равновесия при постоянной температуре равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ, взятых в степенях их стехиометрических коэффициентов, и является величиной постоянной.

В общем случае для гомогенной реакции mA+ nB« pC+qD

константа равновесия равна:

Это уравнение выражаем законом действующих масс для обратимой реакции.

При изменении внешних условий происходит смещение химического равновесия, выражающееся в изменении равновесных концентраций исходных веществ и продуктов реакции. Направление смещения равновесия определяется принципом Ле-Шателье: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет внешнее воздействие.

Химическое равновесие можно сместить влиянием изменения концентрации реагирующих веществ, температуры, давления.

При увеличении концентрации исходных веществ равновесие сместится в соответствии с принципом Ле-Шателье в сторону продуктов реакции, а при увеличении концентраций продуктов – в сторону исходных веществ.

При изменении температуры (ее увеличении) равновесие смещается в сторону эндотермической реакции (D H > 0), идущей с поглощением тепла, т.е. увеличивается скорость прямой реакции, и равновесие смещается в сторону продуктов реакции. В случае экзотермической реакции (D H > 0), при увеличении температуры увеличится скорость обратной реакции, которая будет обеспечивать поглощение тепла, и равновесие сместится в сторону исходных веществ.

Если в реакции участвуют вещества в газообразном состоянии, то химическое равновесие можно сместить изменением давления. Увеличение давления равносильно увеличено концентрации реагирующих веществ. При увеличении давления равновесие смещается в сторону реакции с меньшим числом молей газообразных веществ, а при уменьшении давления – в сторону реакции с большим числом молей газообразных веществ.

Пример 1.

Рассчитайте исходные концентрации вещества А и В в гомогенной системе А+3В«2С, если равновесные концентрации А=0,1 моль/л, В=0,2 моль/л, С= 0,7 моль/л.

Известно, что исходная концентрация вещества равна сумме равновесной и концентрации, ушедшей на реакцию, т.е. прореагировавшей:

Чтобы найти надо знать, сколько вещества А прореагировало.

Рассчитываем , составляя пропорцию по уравнению реакций:

2моль/л С получено из 1 моль/л А

0,7 моль/л С ––––––––х моль/л А,

х= (0,7×1)/2= 0,35 моль/л

Рассчитываем исходную концентрацию вещества В:

Для нахождения составим пропорцию:

2 моль/л С получено из 3моль/л В

0,7 моль/л С –––––––––––––х моль/л В

х = (0,7×3)/2 = 1,05 моль/л

Тогда исходная концентрация В равна:

Пример 2 .

Рассчитайте равновесные концентрации веществ в системе А+В «С+Д при условии, что исходные концентрации веществ: А=1 моль/л, В= 5 моль/л. Константа равновесия равна 1.

Предположим, что к моменту равновесия вещества А прореагировало х молей. Исходя из уравнения реакции, равновесные концентрации будут:

;

так как по уравнению реакции вещества В ушло на реакции столько же, сколько прореагировало вещества А.

Подставляем значения равновесных концентраций в константу равновесия и находим х.

Тогда:

Пример 3.

В системе установилось равновесие: 2АВ+В 2 «2АВ; D H > 0.

В каком направлении сместится равновесие при уменьшении температуры?

Данная прямая реакция является эндотермической, т.е. идет с поглощением тепла, поэтому при уменьшении температуры в системе, равновесие в соответствии с принципом Ле-Шателье сместится влево, в сторону обратной реакции, которая является экзотермической.

Пример 4 .

Равновесие системы А + В « АВ установилось при следующих концентрациях веществ: С(А)=С(В)=C(АВ)=0,01моль/л. Рассчитайте константу равновесия и исходные концентрации веществ.72. Исходные концентрации оксида азота (II) и хлора в системе

2NO + Cl2 2NOCl

составляют соответственно 0,5 моль/л и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировало 20 оксида азота (II).

73. При некоторой температуре равновесные концентрации реагентов обратимой химической реакции

2А(г)+В(г) 2С(г)

составили [А]=0,04 моль/л, [В]=0,06 моль/л, [C]=0,02 моль/л. Вычислите константу равновесия и исходные концентрации веществ А и В.

74. При некоторой температуре равновесные концентрации в системе

составляли соответственно: = 0,04 моль/л, = 0,06 моль/л,

0,02 моль/л. Вычислите константу равновесия и исходные кон-

центрации оксида серы (IV) и кислорода.

75. При состоянии равновесия системы

концентрации участвующих веществ были: = 0,3 моль/л; = =0,9 моль/л; = 0,4 моль/л. Рассчитайте, как изменятся скорости прямой и обратной реакции, если давление увеличится в 5 раз. В каком направлении сместится равновесие?

76. Вычислите константу равновесия обратимой реакции

2SO2(г) + O2(г) 2SO3(г),

если равновесная концентрация =0,04 моль/л, а исходные концен-трации веществ =1 моль/л, =0,8 моль/л.

77. Равновесие системы

CO + Cl2 COCl2,

установилось при следующих концентрациях реагирующих веществ: [СО] = =[Сl2] = = 0,001 моль/л. Определите константу равновесия и исходные концентрации окиси углерода и хлора.

78. Исходные концентрации оксида углерода (II) и паров воды равны и составляют 0,03 моль/л. Вычислите равновесные концентрации СО, Н2О и Н2в системе

CO + H2O CO2+ H2,

если равновесная концентрация СО2оказалась равной 0,01 моль/л. Вычислите константу равновесия.

79. Определите равновесную концентрацию водорода в системе

если исходная концентрация HJ составляла 0,05 моль/л, а константа равновесия К=0,02.

80. Константа равновесия системы

СО + Н2О СО2+ Н2

при некоторой температуре равна 1. Вычислите процентный состав смеси в состоянии равновесия, если начальные концентрации СО и Н2О составляют по 1 моль/л.

Увеличение давления в системе в 3 раза равносильно уменьшению объема системы в 3 раза. При этом концентрации реагирующих веществ возрастут в 3 раза. Согласно закону действующих масс, начальная скорость реакции равна:

После увеличения давления в 3 раза концентрации NO и O 2 увеличатся в 3 раза, и скорость реакции давление станет равна:

Отношение конечной скорости реакции давление к начальной скорости реакции давление показывает, как изменится скорость реакции после изменения давления.

Следовательно, получаем скорость реакции давление :

Ответ:

скорость реакции увеличится в 27 раз.

  1. Во-первых:2NO + O2 = 2NO2, а не то, что Вы написали.

    Давление сильно влияет на скорость реакций с участием газов, потому что оно непосредственно определяет их концентрации.
    По принципу Ле-Шателье увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т. е. к образованию меньшего числа молекул) , это значит, что в нашем случае увеличится скорость ПРЯМОЙ реакции.

    Скорость химических реакций, протекающих в однородной среде при постоянной температуре, прямо пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов.

    До изменения давления реакция описывается кинетическим уравнением:
    V1 = k *2 · ;
    При увеличении давления в 4 раза концентрации реагентов увеличатся в 4 раза. После увеличения давления в 4 раза реакция описывается кинетическим уравнением:
    V2 = k (4)*2 · 4= 64 k *2 · ;
    Находим изменение скорости реакции при P2=4P1:
    V2 / V1 = 64

    Скорость увеличится в 64 раза.

  2. V1=k*C(N2)*C(H2)^3
    2/ V2=k*C(N2)*(xC(H2))^3, где х- число, показывающее, во сколько раз необходимо увеличить концентрацию водорода
    3. V2/V1=100, откуда х^3=100, x=4,65
    ответ: концентрацию водорода необходимо увеличить в 4,65 раз
  3. Скорость реакции N2+ 3H2 = 2NH3 рассчитывается по формуле: v = K**^3,
    где концентрации реагентов - в степени, равной коэффициентам в уравнении. Значит, нужно возвести в 3-ю степень:
    2^3 = 8 во столько раз увеличится скорость
  4. овышения давления в 3 раза скорость простой реакции 2NO+O2=2NO2 возрастёт 1)в 3 раза 2)в 9 раз... 4)в 18 раз 2.Температурный коэффициент реакции равен 2.при нагревании от 20 градусов до 50 скорость реакции возрастает 1)в 2 раза 2)в 4 раза 3)в 6 раз 4)в 8 раз 3.изменение давления влияет на скорость химической реакции 1)между... и гидроксидом калия 4.к каталитическим процессам относится реакция между 1)натрием и водой 2)бутеном-1 и водой... и водой 4)оксидом меди(2) и водородом 5.скорость реакции цинка с раствором серной кислоты не зависит... протекает реакция 1)Ag+Cl 2)Fe+O2 3)N2+O2 4)Cl2+Fe 9.при нагревании на каждые 10 градусов цельсия скорость
  5. aA + bB = cC + dD
    В этом уравнении строчными буквами обозначены стехиометрические коэффициенты, а прописными - формулы веществ. Для этого общего случая скорость прямой реакции определяется следующим уравнением:
    Vпр = k1()
    b) K= /(* )
    c) По идее, нечего писать, ибо газообразных в-в в системе нет.
    d) K=

    В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

    Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

    Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


    n 2 − n 1 Δn
    υ = –––––––––– = –––––––– = Δс/Δt (1)
    (t 2 − t 1) v Δt v

    где c = n / v - концентрация вещества,

    Δ (читается «дельта») - общепринятое обозначение изменения величины.

    Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

    2SO 2 + O 2 = 2SO 3

    Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

    Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

    Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


    Δn
    υ = –––––– (2)
    Δt S

    Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

    • твердое вещество с другим твердым, жидкостью или газом,
    • две несмешивающиеся жидкости,
    • жидкость с газом.

    Гомогенные реакции протекают между веществами в одной фазе:

    • между хорошо смешивающимися жидкостями,
    • газами,
    • веществами в растворах.

    Условия, влияющие на скорость химических реакций

    1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

    2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

    3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

    4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

    Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

    5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

    Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

    2H 2 O 2 = 2H 2 O + O 2

    Оксид марганца (IV) остается на дне, его можно использовать повторно.

    Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

    Еще несколько примеров.