Прямой поперечный изгиб основные понятия. Простые виды сопротивления

02.04.2020

Силы, действующие перпендикулярно к оси бруса и располо­женные в плос-кости, проходящей через эту ось, вызывают дефор­мацию, называемую попереч-ным изгибом . Если плоскость действия упомянутых сил главная плоскость, то имеет место прямой (плоский) поперечный изгиб. В противном случае изгиб называет­ся косым поперечным. Брус, подверженный преимущественно из­гибу, называется балкой 1 .

По существу поперечный изгиб есть сочетание чистого изги­ба и сдвига. В связи с искривлением поперечных сечений из-за неравномерности распределе-ния сдвигов по высоте возникает вопрос о возможности применения формулы нормального напряжения σ х , выведенной для чистого изгиба на основании гипотезы плоских сечений.

1 Однопролетная балка, имеющая по концам соответственно одну цилиндрическую неподвижную опору и одну цилиндрическую подвижную в направлении оси балки, называется простой . Балка с одним защемленным и другим свободным концом называется консолью . Простая балка, имеющая одну или две части, свешивающиеся за опору, называется консольной .

Если, кроме того, сечения взяты далеко от мест приложения нагрузки (на расстоянии, не меньшем половины высоты сечения бруса), то можно, как и в случае чистого изгиба, считать, что волокна не оказывают давления друг на друга. Значит, каждое волокно испытывает одноосное растяжение или сжатие.

При действии распределенной нагрузки поперечные силы в двух смежных сечениях будут отличаться на величину, рав­ную qdx . Поэтому искривления сечений будут также несколько отличаться. Кроме того, волокна будут оказывать давление друг на друга. Тщательное исследование вопроса показывает, что если длина бруса l достаточно велика по сравнению с его высотой h (l / h > 5), то и при распределенной нагрузке указанные факторы не оказывают существенного влияния на нормальные напряжения в поперечном сечении и потому в практических расчетах могут не учитываться.

а б в

Рис. 10.5 Рис. 10.6

В сечениях под сосредоточенными грузами и вблизи них распределение σ х отклоняется от линейного закона. Это отклонение, носящее местный характер и не сопровождающееся увеличением наибольших напряжений (в крайних волокнах), на практике обычно не принимают во внимание.

Таким образом, при поперечном изгибе (в плоскости ху ) нор­мальные напряжения вычисляются по формуле

σ х = [М z (x )/I z ]y .

Если проведем два смежных сечения на участке бруса, свободном от нагрузки, то поперечная сила в обоих сечениях будет одинакова, а значит, одинаково и искривление сечений. При этом какой-либо отрезок волокна ab (рис.10.5) переместится в новое положение a"b" , не претерпев дополнительного удлинения, и следовательно, не меняя величину нормального напряжения.

Определим касательные напряжения в поперечном сечении через парные им напряжения, действующие в продольном сечении бруса.

Выделим из бруса элемент длиной dx (рис. 10.7 а). Проведём горизонта-льное сечение на расстоянии у от нейтральной оси z , разделившее элемент на две части (рис. 10.7) и рассмотрим равновесие верхней части, имеющей основа-

ние шириной b . В соответствии с законом парности касательных напряжений, напряжения действующие в продольном сечении равны напряжениям, действующим в поперечном сечении. С учётом этого в предположении о том, что касательные напряжения в площадке b распределены равномерно ис-пользуем условие ΣХ = 0, получим:

N * - (N * +dN *)+

где: N * - равнодействующая нормальных сил σв левом поперечном сече-нии элемента dx в пределах “отсечённой” площадки А * (рис. 10.7 г):

где: S=- статический момент “отсечённой” части поперечного сече-ния (заштрихованная площадь на рис. 10.7 в). Следовательно, можно записать:

Тогда можно записать:

Эта формула была получена в XIX веке русским ученым и инженером Д.И. Журавским и носит его имя. И хотя эта формула приближенная, так как усредняет напряжение по ширине сечения, но полученные результаты расчета по ней, неплохо согласуются с экспериментальными данными.

Для того, чтобы определить касательные напряжения в произвольной точке сечения отстоящей на расстоянии y от оси z следует:

Определить из эпюры величину поперечной силы Q, действующей в сечении;

Вычислить момент инерции I z всего сечения;

Провести через эту точку плоскость параллельную плоскости xz и определить ширину сечения b ;

Вычислить статический момент отсеченной площади Sотносительно главной центральной оси z и подставить найденные величины в формулу Жура-вского.

Определим в качестве примера касательные напряжения в прямоуголь-ном поперечном сечении (рис. 10.6, в). Статический момент относительно оси z части сечения выше линии 1-1, на которой определяется напряжения запишем в виде:

Он изменяется по закону квадратной параболы. Ширина сечения в для прямоугольного бруса постоянна, то параболическим будет и закон изменения касательных напряжений в сечении (рис.10.6, в). При y =и у = − каса-тельные напряжения равны нулю, а на нейтральной оси z они достигают наибольшего значения.

Для балки круглого поперечного сечения на нейтральной оси имеем.

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскоcтями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом Mo; во втором – сосредоточенной силой F.

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент Мz и поперечная сила Qy (или при изгибе относительно другой главной оси – изгибающий момент Мy и поперечная сила Qz).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Qy считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;



2) изгибающий момент Мz считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M, знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M≡Mz, Q≡Qy.

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль

оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q+dQ, а также изгибающие моменты M и M+dM. Из условия равновесия выделенного элемента получим

Первое из двух записанных уравнений дает условие

Из второго уравнения, пренебрегая слагаемым q·dx·(dx/2) как бесконечно малой величиной второго порядка, найдем

Рассматривая выражения (10.1) и (10.2) совместно можем получить

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил: а – на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми; б – на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами.

При этом, если эпюру М строим «на растянутом волокне», то выпуклость параболы будет направлена по направлению действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию; в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпюре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q>0, момент М возрастает, а на участках, где Q<0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая.

Отметим, что в теории упругости можно получить точную зависи-мость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли) – сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряжений – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – соседние продольные волокна не давят друг на друга.

Статическая сторона задачи

Чтобы определить напряжения в поперечных сечениях балки, рассмотрим, прежде всего, статическую сторон у задачи. Применяя метод мысленных сечений и составляя уравнения равновесия для отсеченной части балки, найдем внутренние усилия при изгибе. Как было показано ранее, единственным внутренним усилием, действующим в сечении бруса при чистом изгибе, является внутренний изгибающий момент, а значит здесь возникнут связанные с ним нормальные напряжения.

Связь между внутренними усилиями и нормальными напряжениями в сечении балки найдем из рассмотрения напряжений на элементарной площадке dA, выделенной в поперечном сечении A балки в точке с координатами y и z (ось y для удобства анализа направлена вниз):

Как видим, задача является внутренне статически неопределимой, так как неизвестен характер распределения нормальных напряжений по сечению. Для решения задачи рассмотрим геометрическую картину деформаций.

Геометрическая сторона задачи

Рассмотрим деформацию элемента балки длиной dx, выделенного из изгибаемого стержня в произвольной точке с координатой x. Учитывая принятую ранее гипотезу плоских сечений, после изгиба сечения балки повернуться относительно нейтральной оси (н.о.) на угол dϕ, при этом волокно ab, отстоящее от нейтральной оси на расстояние y, превратится в дугу окружности a1b1, а его длина изменится на некоторую величину. Здесь напомним, что длина волокон, лежащих на нейтральной оси, не изменяется, а потому дуга a0b0 (радиус кривизны которой обозначим ρ) имеет ту же длину, что и отрезок a0b0 до деформации a0b0=dx.

Найдем относительную линейную деформацию εx волокна ab изогнутой балки.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

При поперечном изгибе в поперечном сечении бруса (балки), кроме изгибающего момента, действует также поперечная сила. Если поперечный изгиб является прямым, то изгибающий момент действует в плоскости, совпадающей с одной из главных плоскостей бруса.

Поперечная сила при этом обычно параллельна плоскости действия изгибающего момента и, как показано ниже (см. § 12.7), проходит через определенную точку поперечного сечения, называемую центром изгиба. Положение центра изгиба зависит от формы и размеров поперечного сечения бруса. При поперечном сечении, имеющем две оси симметрии, центр изгиба совпадает с центром тяжести сечения.

Экспериментальные и теоретические исследования показывают, что формулы, полученные для случая прямого чистого изгиба, применимы и при прямом поперечном изгибе.

Поперечная сила, действующая в сечении бруса, связана с касательными напряжениями, возникающими в этом сечении, зависимостью

где - составляющая касательного напряжения в поперечном сечении бруса, параллельная оси у и силе

Величина представляет собой элементарную касательную силу (параллельную силе Q), действующую на элементарную площадку поперечного сечения бруса.

Рассмотрим некоторое поперечное сечение бруса (рис. 37.7). Касательные напряжения в точках около контура сечения направлены по касательной к контуру. Действительно, если бы касательное напряжение имело составляющую, направленную по нормали к контуру, то по закону парности касательных напряжений такое же напряжение возникло бы и на боковой поверхности бруса, что невозможно, так как боковая поверхность свободна от напряжений.

Касательное напряжение в каждой точке сечения можно разложить на две составляющие: .

Рассмотрим определение составляющих ту. Определение составляющих рассмотрено в § 12.7 только для некоторых типов поперечных сечений.

Предполагается, что составляющие касательных напряжений по всей ширине сечения в направлении, параллельном оси , одинаковы (рис. 37.7), т. е. что величина изменяется только по высоте сечения.

Для определения вертикальных составляющих касательных напряжений выделим из балки постоянного сечения, симметричного относительно оси у, элемент 1-2-3-4 двумя поперечными сечениями, проведенными на расстояниях от левого конца балки, и одним сечением, параллельным нейтральному слою, отстоящим от него на расстояние (рис. 38.7).

В поперечном сечении балки с абсциссой действует изгибающий момент М, а с абсциссой -момент М В соответствии с этим нормальные напряжения а и , действующие по площадкам 1-2 и 3-4 выделенного элемента, определяются выражениями [см. формулу (17.7)]

Эпюры нормальных напряжений действующих по площадкам 1-2 и 3-4 при положительном значении М, показаны на рис. 39.7. По этим же площадкам действуют и касательные напряжения также показанные на рис. 39.7. Величина этих напряжений изменяется по высоте сечения.

Обозначим величину касательного напряжения в нижних точках площадок 1-2 и 3-4 (на уровне ). По закону парности касательных напряжений следует, что такие же по величине касательные напряжения действуют по нижней площадке 1-4 выделенного элемента. Нормальные напряжения по этой площадке считаются равными нулю, так как в теории изгиба предполагается, что продольные волокна балки не оказывают друг на друга давления.

Площадку 1-2 или 3-4 (рис. 39.7 и 40.7), т. е. часть поперечного сечения, расположенную выше уровня (выше площадки 1-4), называют отсеченной частью поперечного сечения. Ее площадь обозначим

Составим уравнение равновесия для элемента 1-2-3-4 в виде суммы проекций всех приложенных к нему сил на ось балки:

Здесь - равнодействующая элементарных сил возникающих по площадке 1-2 элемента; - равнодействующая элементарных сил возникающих по площадке 3-4 элемента; - равнодействующая элементарных касательных сил, возникающих по площадке 1-4 элемента; - ширина поперечного сечения балки на уровне у

Подставим в уравнение (27.7) выражения по формулам (26.7):

Но на основании теоремы Журавского [формула (6.7)]

Интеграл представляет собой статический момент площади относительно нейтральной оси поперечного сечения балки.

Следовательно,

По закону парности касательных напряжений напряжения в точках поперечного сечения балки, отстоящих на расстояние от нейтральной оси, равны (по абсолютной величине) т. е.

Таким образом, величины касательных напряжений в поперечных сечениях балки и в сечениях ее плоскостями, параллельными нейтральному слою, определяются по формуле

Здесь Q - поперечная сила в рассматриваемом поперечном сечении балки; - статический момент (относительно нейтральной оси) отсеченной части поперечного сечения, расположенной по одну сторону от уровня, на котором определяются касательные напряжения; J - момент инерции всего поперечного сечения относительно нейтральной оси; - ширина поперечного сечения балки на том уровне, на котором определяются касательные напряжения .

Выражение (28.7) называется формулой Журавского.

Определение касательных напряжений по формуле (28.7) производится в следующем порядке:

1) проводится поперечное сечение балки;

2) для этого поперечного сечения определяются значения поперечной силы Q и величина J момента инерции сечения относительно главной центральной оси, совпадающей с нейтральной осью;

3) в поперечном сечении на уровне, для которого определяются касательные напряжения, параллельно нейтральной оси проводится прямая, отсекающая часть сечения; длина отрезка этой прямой, заключенного внутри контура поперечного сечения, представляет собой ширину , входящую в знаменатель формулы (28.7);

4) вычисляется статический момент S отсеченной (расположенной по одну сторону от прямой, указанной в п. 3) части сечения относительно нейтральной оси;

5) по формуле (28.7) определяется абсолютное значение касательного напряжения . Знак касательных напряжений в поперечном сечении балки совпадает со знаком поперечной силы, действующей в этом сечении. Знак же касательных напряжений в площадках, параллельных нейтральному слою, противоположен знаку поперечной силы.

Определим в качестве примера касательные напряжения в прямоугольном поперечном сечении балки, изображенном на рис. 41.7, а. Поперечная сила в этом сечении действует параллельно оси у и равна

Момент инерции поперечного сечения относительно оси

Для определения касательного напряжения в некоторой точке С проведем через эту точку прямую 1-1, параллельную оси (рис. 41.7, а).

Определим статический момент S части сечения, отсеченной прямой 1-1, относительно оси . За отсеченную можно принимать как часть сечения, расположенную выше прямой 1-1 (заштрихованную на рис. 41.7, а), так и часть, расположенную ниже этой прямой.

Для верхней части

Подставим в формулу (28.7) значения Q, S, J и b:

Из этого выражения следует, что касательные напряжения изменяются по высоте поперечного сечения по закону квадратной параболы. При напряжения Наибольшие напряжения имеются в точках нейтральной оси, т. е. при

где - площадь поперечного сечения.

Таким образом, в случае прямоугольного сечения наибольшее касательное напряжение в 1,5 раза больше среднего его значения, равного Эпюра касательных напряжений, показывающая их изменение по высоте сечения балки, изображена на рис. 41.7, б.

Для проверки полученного выражения [см. формулу (29.7)] подставим его в равенство (25.7):

Полученное тождество свидетельствует о правильности выражения (29.7).

Параболическая эпюра касательных напряжений, показанная на рис. 41.7, б, является следствием того, что при прямоугольном сечении статический момент отсеченной части сечения изменяется с изменением положения прямой 1-1 (см. рис. 41.7, а) по закону квадратной параболы.

При сечениях любой другой формы характер изменения касательных напряжений по высоте сечения зависит от того, по какому закону изменяется отношение при этом, если на отдельных участках высоты сечения ширина b постоянна, то напряжения на этих участках изменяются по закону изменения статического момента

В точках поперечного сечения балки, наиболее удаленных от нейтральной оси, касательные напряжения равны нулю, так как при определении напряжений в этих точках в формулу (28.7) подставляется значение статического момента отсеченной части сечения, равное нулю.

Величина 5 достигает максимума для точек, расположенных на нейтральной оси, однако касательные напряжения при сечениях с переменной шириной b могут не быть максимальными на нейтральной оси. Так, например, эпюра касательных напряжений для сечения, изображенного на рис. 42.7, а имеет вид, показанный на рис. 42.7, б.

Касательные напряжения, возникающие при поперечном изгибе в плоскостях, параллельных нейтральному слою, характеризуют собой силы взаимодействия между отдельными слоями балки; эти силы стремятся сдвинуть соседние слои друг относительно друга в продольном направлении.

Если между отдельными слоями балки не имеется достаточной связи, то такой сдвиг произойдет. Например, доски, положенные друг на друга (рис. 43.7, а), будут сопротивляться внешней нагрузке, как целый брус (рис. 43.7, б), пока усилия по плоскостям соприкасания досок не превысят сил трения между ними. Когда же силы трения будут превзойдены, то доски сдвинутся одна по другой, как это показано на рис. 43.7, в. При этом прогибы досок резко увеличатся.

Касательные напряжения, действующие в поперечных сечениях балки и в сечениях, параллельных нейтральному слою, вызывают деформации сдвига, в результате которых прямые углы между этими сечениями искажаются, т. е. перестают быть прямыми. Наибольшие искажения углов имеются в тех точках поперечного сечения, в которых действуют наибольшие касательные напряжения; у верхнего и нижнего краев балки искажения углов отсутствуют, так как касательные напряжения там равны нулю.

В результате деформаций сдвига поперечные сечения балки при поперечном изгибе искривляются. Однако это существенно не влияет на деформации продольных волокон, а следовательно, и на распределение нормальных напряжений в поперечных сечениях балки.

Рассмотрим теперь распределение касательных напряжений в тонкостенных балках с поперечными сечениями, симметричными относительно оси у, по направлению которой действует поперечная сила Q, например, в балке двутаврового сечения, изображенной на рис. 44.7, а.

Для этого по формуле Журавского (28.7) определим касательные напряжения в некоторых характерных точках поперечного сечения балки.

В верхней точке 1 (рис. 44.7, а) касательные напряжения так как вся площадь поперечного сечения расположена ниже этой точки, а потому статический момент 5 относительно оси (части площади сечения, расположенной выше точки 1) равен нулю.

В точке 2, расположенной непосредственно над линией, проходящей через нижнюю грань верхней полки двутавра, касательные напряжения, подсчитанные по формуле (28.7),

Между точками 1 и 2 напряжения [определяемые по формуле (28.7)] изменяются по квадратной параболе, как для прямоугольного сечения. В стенке двутавра в точке 3, расположенной непосредственно под точкой 2, касательные напряжения

Так как ширина b полки двутавра значительно больше толщины d вертикальной стенки, то эпюра касательных напряжений (рис. 44.7, б) имеет резкий скачок в уровне, соответствующем нижней грани верхней полки. Ниже точки 3 касательные напряжения в стенке двутавра изменяются по закону квадратной параболы, как для прямоугольника. Наибольшие касательные напряжения возникают на уровне нейтральной оси:

Эпюра касательных напряжений, построенная по полученным значениям и , изображена на рис. 44.7, б; она симметрична относительно ординаты .

Согласно этой эпюре, в точках, расположенных у внутренних граней полок (например, в точках 4 на рис. 44.7, а), действуют касательные напряжения перпендикулярные к контуру сечения. Но, как уже отмечалось, такие напряжения около контура сечения возникать не могут. Следовательно, предположение о равномерном распределении касательных напряжений по ширине b поперечного сечения, положенное в основу вывода формулы (28.7), неприменимо к полкам двутавра; оно неприменимо и к некоторым элементам других тонкостенных балок.

Касательные напряжения ту в полках двутавра определить методами сопротивления материалов нельзя. Эти напряжения весьма невелики по сравнению с напряжениями ту в стенке двутавра. Поэтому их не учитывают и эпюру касательных напряжений строят только для стенки двутавра, как показано на рис. 44.7, в.

В некоторых случаях, например при расчете составных балок, определяют величину Т касательных сил, действующих в сечениях балки, параллельных нейтральному слою и приходящихся на единицу ее длины. Эту величину найдем, умножив значение напряжения на ширину сечения b:

Подставим значение по формуле (28.7):


Поперечный изгиб получается, когда сила действует на брус по направлению, поперечному к его длине.

Рассмотрим два варианта поперечного изгиба: первый, балка лежит на двух опорах, причем груз расположен на балке в пределах между опорами и второй, балка прочно заделана одним концом в стену, а груз находится на свободном конце балки.

Прежде всего выясним, какое влияние на изгиб оказывает место приложения силы. Если мы положим доску на две опоры и будем по ней двигаться от опоры к середине, то прогиб доски будет непрерывно возрастать по мере нашего приближения к середине. Из этого опыта можно сделать заключение, что чем ближе к середине будет приложена сила, тем больше будет прогиб балки. То же самое явление мы будем наблюдать при опыте с балкой, заделанной одним концом в стену, при перемещении груза от стены к концу балки.

В зданиях и сооружениях на балку могут действовать одновременно несколько сил, и притом они могут перемещаться, как, например, автомобили на мосту. Определить влияние этих сил на балку не так просто, как это мы делаем при растяжении или сжатии. Зависимость получается не простая, и человеку без высшего технического образования заниматься этим вопросом сложно.

Как уже было сказано, сила может быть приложена в любом месте балки. Такая сила, имеющая одну точку приложения, называется сосредоточенной .

Если сила равномерно распределена по всей длине балки, то такая сила называется равномерно-распределенной .

Например, на балке в одном месте находится мешок с песком весом 100 кг, это будет сосредоточенная нагрузка (сила), а если тот же груз равномерно рассыпать по всей длине балки, то это будет равномерно-распределенная нагрузка. И в том и в другом случае величина силы одинакова 100 кг, но способ распределения различен. В зависимости от этого и напряжение в балке будет различное, а именно, при сосредоточенной по середине балки нагрузке напряжение будет в 2 раза больше, чем при нагрузке, равномерно-распределенной.

Нам уже известно, что, чем больше сосредоточенный груз будет приближаться к опоре, тем меньше будет прогиб балки, и тем меньше напряжение в материале. Следовательно, если балка будет иметь достаточную прочность при расположении какого-либо груза по середине, то она, безусловно, выдержит этот груз, если он будет находиться в каком угодно месте балки.

Далее, очень интересно выяснить, какие получаются напряжения в нагруженной балке, и как они распределены. Произведем такой опыт: возьмем брус и сделаем на нем пропил в верхней стороне, а затем его нагрузим. Мы увидим, что обе стороны пропила сблизятся вплотную друг к другу. Из этого опыта мы заключаем, что в верхней части бруса, под влиянием нагрузки, происходит сжатие.

Если мы теперь сделаем пропил в нижней стороне бруса и опять его нагрузим, то увидим, что края пропила разошлись и пропил в нижней части сделался очень широким. Из этого мы заключаем, что в нижней части бруса, под влиянием нагрузки, происходит растяжение. Итак, следовательно, в верхней части бруса или балки под влиянием нагрузки происходит сжатие, а в нижней - растяжение. Но так как это происходит в одной и той же балке одновременно, то очевидно, что где-то есть место, в котором растяжение переходит в сжатие, и наоборот. Такое место, действительно, имеется в каждой балке. Эту линию, или вернее плоскость раздела сжатия от растяжения, называют нейтральной осью. В деревянной балке прямоугольного сечения она находится приблизительно посредине высоты.

Так как мы теперь знаем распределение усилий в брусе, находящемся под грузом, то нам будет вполне понятно, как иногда выпрямляют сильно погнувшуюся балку. Для этого ее подпирают и в верхней части балки делают пропил с забиванием в него клина с одновременным поддомкрачиванием снизу. Так как в целой балке, находящейся под грузом, сила растяжения в нижней части равна силе сжатия в верхней, то при забивке клиньев, очевидно, сила сжатия в верхней части балки увеличится, и балка искривится в обратную сторону, т. е. выпрямится.

Далее, не трудно убедиться, что при изгибе балки в ней появляются скалывающие усилия. Для этого опыта возьмем два одинаковой длины бруса и положим один брус на другой. В ненагруженном состоянии торцы их будут совпадать, как показано на рис. 4а. Если теперь мы их нагрузим, то произойдет прогиб брусьев, и торцы их будут расположены так, как показано на рис. 4б. Мы видим, что торцы брусьев не совпадают и нижняя кромка торца верхнего бруса выступает за линию верхней кромки торца нижнего бруса. Очевидно, что по плоскости соприкосновения брусьев произошел сдвиг, в результате которого и появилось выдвижение концов одного бруса над другим. Если бы брус был из одного куска дерева, то очевидно, что никаких изменений на концах бруса мы не заметили бы, но несомненно, что в этом брусе в нейтральной плоскости были бы скалывающие усилия, и если бы прочность дерева была недостаточна, то по концам бруса обнаружилось бы расслоение.

Рис. 4. Изгиб составной балки

После этого опыта становится вполне понятным устройство составных балок на шпонках. На рис. 5 показана такая балка, состоящая из трех брусков, между которыми врублены шпонки. Очевидно, что конец одной балки не может сдвинуться относительно другой, так как этому перемещению препятствуют шпонки. Чем прочнее связь между шпонками и балками, тем жестче балка.

Продолжим предыдущий опыт. Если мы через оба бруса проведем на равном расстоянии черты карандашом, как показано на рис. 4а, и затем нагрузим брусья, то увидим, что средняя черта на обоих брусьях останется без изменения, а все остальные сместятся, как показано на рис. 4б. При этом расхождение черточек будет тем больше, чем дальше они отстоят от середины. Из этого опыта мы заключаем, что наибольшая скалывающая сила находится у концов балок. Вот почему в балках на шпонках следует шпонки ставить чаще к концам и реже к середине.


Рис. 5. Составная балка с врубленными шпонками

Итак, все проделанные опыты убеждают нас в том, что в нагруженной балке возникают различные напряжения.

Будем опять учиться на опыте. Все знают, что если положить доску плашмя и нагрузить ее, то она заметно прогнется, а если ту же доску поставить на ребро и нагрузить ее той же нагрузкой, то прогиб почти не будет заметен. Этот опыт убеждает нас в том, что величина изгиба зависит, главным образом, от высоты балки, а не от ширины. Если взять два квадратных бруса и сплотить их шпонками и болтами, так чтобы получилась одна балка высотою в два квадрата, то такая балка сможет выдержать груз в два раза больше, чем обе эти балки, положенные рядом. При трех балках груз может быть в 4,5 раза больше и т. д.

Из этих опытов нам ясно, что гораздо выгоднее увеличивать высоту балки, чем ее ширину, но, конечно, до известного предела, так как при очень высокой и тонкой балке она сможет изогнуться в сторону.

Так как балки вытесываются или выпиливаются из бревен, то является вопрос, какое же отношение должно быть между высотой и шириной балки, чтобы получить балку наибольшей прочности. Строительная механика дает точный ответ на этот вопрос, а именно, в высоте должно быть 7 каких-либо мер, а в ширине таких же точно мер только 5. Практически это делается, следующим образом. На торце круглого бревна (рис.6) проводят, через центр линию и делят ее на три равные части. Затем из этих точек по наугольнику проводят в противоположные стороны линии до края торца. Наконец, эти крайние точки соединяют с концами линии, проведенной через центр торца, и у нас получится прямоугольник, у которого длинная сторона будет иметь 7 мер, а короткая таких же 5. По этим линиям производится опиловка или обтеска бревна и получается самая прочная балка прямоугольного сечения, какую только можно сделать из данного бревна.


Рис. 6. Балка наибольшей прочности, которую можно вырубить из бревна

Интересно отметить, что, круглое бревно менее прочно в отношении изгиба, чем тоже бревно со слегка стесанными горбылями с верхней и нижней стороны.

На основании всего вышеизложенного можно сделать заключение, что точное определение размеров балок зависит от многих обстоятельств: от числа и местоположения грузов, от рода нагрузки, от способа ее распределения (сплошная или сосредоточенная), от формы балки, ее длины и т. д. Учет всех этих обстоятельств довольно сложен и плотнику-практику он недоступен.

При определении размеров балок, необходимо, кроме прочности, иметь в виду также и прогиб балок. Иногда на постройке плотники высказывают недоумение, почему ставится такая толстая балка, можно было бы взять и потоньше. Совершенно верно, и более тонкая балка выдержит тот груз, который на ней будет расположен, но когда впоследствии по полу на тонких балках будут ходить или танцевать, то такой пол будет гнуться, как качели. Для избегания очень неприятной зыбкости пола, балки кладут толще, чем это требуется по условиям прочности. В жилых домах прогиб балок допускается не свыше 1/250 пролета. Если, например, пролет 9 м, то есть 900 см, то наибольший прогиб должен быть не больше 900: 250, что составит З,6 см.

В заключение следует упомянуть об одном практическом правиле для определения высоты балок в жилых зданиях, а именно: высота балки должна быть не менее 1/24 длины балки. Например, если длина балки 8 м (800 см), то высота должна быть 800: 24 = 33 см.

Для практических целей, помимо всего вышеизложенного, следует ознакомиться с прилагаемыми таблицами, которые дадут возможность, без всяких затруднений легко и быстро определять нужный размер балки для случая равномерно-распределенной нагрузки. В этих таблицах указаны допускаемые нагрузки на балки прямоугольного и круглого сечения, для различных размеров балок и для разных пролетов.

Пример1. В помещении с пролетом 8 м имеется нагрузка весом 2,5 т (2500 кг). Нужно подобрать балки для этой нагрузки.В таблице прямоугольных балок рассматриваем столбец с пролетом 8 м. Нагрузку в 2500 кг может выдержать балка сечением 31×22 см или две балки 26×18,5, или три балки 24,5×17,5 см и т.д. Балки нужно распределить с соответствующим шагом учитывая, что крайние балки несут половину нагрузки от балок, расположенных посредине.

Для груза, расположенного сосредоточенно по середине пролета, величина его должна быть в два раза меньше, чем указано в таблице.

Пример 2. Для прямоугольной балки 7 к 5 из 32-сантиметрового бревна при пролете в 6 м можно допустить равномерно-распределенную нагрузку в 2632 кг (см. таблицу). Если груз будет сосредоточен посредине балки, то можно допустить нагрузку лишь вдвое меньшую, а именно 2632: 2 = 1316 кг.Пример 3. Какого размера балка из бревна, отесанного или опиленного на два канта, выдержит сосредоточенную посредине нагрузку в 1,6 тонны (1600 кг), при пролете в 8 м?

В задании дана сосредоточенная сила, мы знаем, что эта балка должна выдерживать в два раза большую равномерно-распределенную нагрузку, то есть 1600×2=3200 кг. Смотрим в таблице для лафета столбец для пролета в 8 м. Ближайшая к 3200 цифра в таблице 3411 каковой цифре соответствует бревно диаметром в 34 см.

Если балка заделана прочно одним концом в стену, то она может выдержать груз, сосредоточенный на ее свободном конце, в 8 раз меньший, чем та же балка, лежащая на двух опорах и несущая равномерно-распределенную нагрузку.

Пример 4. Какого диаметра бревно, отесанное или опиленное на четыре канта, прочно заделанное одним концом в стену и имеющее свободный конец в 3 м, может выдержать сосредоточенный груз в 800 кг, прикрепленный к ее свободному концу?Если бы эта балка лежала, на двух опорах, то она могла бы выдержать груз в 8 раз больший, то есть 800 × 8 = 6400 кг. Смотрим в таблице для обзольного бруса столбец для пролета в 3 м и находим две ближайшие цифры 5644 кг и 6948 кг. Этим цифрам соответствуют бревна в 30 и 32 см. Можно взять бревно в 31 см.

Если на балке, заделанной одним концом в стену, нагрузка распределена равномерно, то такая балка может выдержать нагрузку в 4 раза меньшую, чем та же балка, лежащая на двух опорах.

Пример 5. Какой груз может выдержать балка прямоугольного сечения, заделанная одним концом в стену, со свободным концом длиною в 4 м, нагруженная равномерно-распределенной нагрузкой общим весом в 600 кг?Если бы эта балка лежала на двух опорах, то она могла бы выдержать груз в 4 раза больший, то есть 600×4=2400 кг. Смотрим в таблице для балки 7 к 5 столбец для пролета в 4 м. Ближайшая цифра 2746, каковой цифре соответствует бревно в 28 см, или брус в 23×16 см.

При расчетах балок может встретиться такой вопрос какое давление испытывают опоры (стены или колонны) от лежащей на них балки с грузом?

Если груз распределен равномерно по всей балке или сосредоточен посредине, то обе опоры несут одинаковую нагрузку.

Если груз расположен ближе к одной опоре, то эта опора несет больший груз, чем другая. Чтобы узнать какой именно, - нужно величину груза умножить на расстояние до другой опоры и разделить на пролет.

Пример 6. На балке, длиною в 4 м, расположен груз в 100 кг, в расстоянии 1 м от левой опоры и, следовательно, в расстоянии 3 м от правой. Требуется найти нагрузку на левую опору.Умножаем 100 на 3 и полученное число делим на 4, получим 75. Следовательно, левая опора испытывает давление в 75, а правая оставшуюся часть нагрузки, то есть 100-75=25 кг.

Если на балке находятся несколько грузов, то расчет нужно сделать для каждого груза отдельно, и затем полученные нагрузки на одну опору сложить.