Образование арахидоновой кислоты. Нарушения метаболизма арахидоновой кислоты

15.11.2020

Арахидоновая кислота (АК) представляет собой жирную кислоту класса омега-6, являясь базовой жирной кислотой при рассмотрении соотношения омега-3 к омега-6 жирным кислотам (относительно жирных кислот рыбьего жира). Является провоспалительной и иммуноподдерживающей.

Фармакологическая группа: омега-6 жирные кислоты
Фармакологическое действие:синтез простагландинов; увеличение притока крови к мышцам, увеличение местной чувствительности к IGF-L и , поддержка спутниковой активации клетки, пролиферация и дифференцировка клеток и увеличение общего уровня синтеза белка и обеспечение роста мышц.

Общая информация

Арахидоновая кислота (5-цис,8-цис,11-цис,14-цис-эйкозантетраеновая кислота) – омега-6 жирная кислота, служащая в качестве основного строительного блока для синтеза простагландинов (например, PGE2 и PGF2a). Эти простагландины являются неотъемлемой частью белкового обмена и мышечного строительства, и выполняют такие важные функции, как увеличение притока крови к мышцам, увеличение местной чувствительности к IGF-L и , поддержка спутниковой активации клетки, пролиферация и дифференцировка клеток и увеличение общего уровня синтеза белка и обеспечение роста мышц. Арахидоновая кислота служит в качестве основного термостата для оборота простагландинов в скелетной мышечной ткани, а также отвечает за инициирование многих непосредственных биохимических изменений, возникающих в ходе выполнения упражнений на сопротивление, которые, в конечном счете, приводят к гипертрофии мышц. Таким образом, арахидоновая кислота является высоко анаболическим веществом.
Среди большого разнообразия добавок для спортсменов и бодибилдеров арахидоновая кислота, наряду с белком, является незаменимым веществом для роста мышц.

Не путать с: линолевой кислотой (родительская омега-6 жирная кислота).

Стоит отметить:

    Возможно, что арахидоновая кислота может усугублять воспаление суставов и болевые ощущения.

Представляет собой:

    Образующее мышцы вещество.

Не сочетается с:

    Добавками рыбьего жира (происходит вмешательство в соотношение омега-3 к омега-6 в пользу омега-6).

Арахидоновая кислота: инструкция по применению

На данный момент недостаточно сведений для того, чтобы рекомендовать какую-либо идеальную дозировку арахидоновой кислоты, но эпизодически принято использовать дозировку около 2000 мг, принимаемую за 45 минут до физических нагрузок. Неясно, если эта дозировка является оптимальной, или какое время она является активной. Стоит также отметить, что для лиц с хроническими воспалительными заболеваниями, например, ревматоидным артритом или воспалительными заболеваниями кишечника, идеальная дозировка арахидоновой кислоты может быть изменена в сторону уменьшения. В состояниях воспалительных заболеваний употребление арахидоновой кислоты может быть противопоказано.

Источники и структура

Источники

Арахидоновая кислота (АК) является наиболее биологически соответствующей омега-6 жирной кислотой, и в липидной мембране клетки представляет собой жирную кислоту, которая конкурирует с двумя жирными кислотами рыбьего жира (ЭПК и ДГУ) в определении соотношения омега-3 к омега-6 жирным кислотам. Текущие данные показывают, что употребление 50-250 мг арахидоновой кислоты в день с некоторыми другими источниками в целом составляет 500 мг в день; употребление арахидиновой кислоты обычно является меньшим, чем у вегетарианцев . Пищевые источники арахидоновой кислоты включают:

Арахидоновая кислота содержится в видимом жире мясных продуктов на том же уровне, что и мясе; несмотря на вышеуказанные показатели, неизвестно, что происходит с арахидоновой кислотой в процессе готовки . Некоторые исследования отмечают увеличение жирных кислота в расчёте на массу в процессе приготовления, в то время как другие не отмечают каких-либо значительных отличий (относительно других жирных кислот). Арахидоновая кислота в натуральном виде содержится в продуктах питания, преимущественно в продуктах животного происхождения. Если арахидоновая кислота отсутствует в рационе питания, линолевая кислота (родительская омега-6 жирная кислота, обнаруживаемая в продуктах животного происхождения) может использоваться для выработки арахидоновой кислоты в организме. Концентрации АК в организме соответствуют нелинейному дозозависимому отношению с употреблением линолевой кислоты (родительская омега-6 жирная кислота) из рациона питания, где рацион питания человека, состоящий из менее, чем 2% линолевой кислоты, способствуют увеличениям плазменных показателей арахидоновой кислоты при употреблении дополнительных добавок линолевой кислоты; при доле в 6% (классический западный рацион питания) такого выявлено не было. С другой стороны, пищевое употребление арахидоновой кислоты дозозависимым образом увеличивает арахидоновую кислоту в плазме крови . Линолевая кислота (родительская омега-6 жирная кислота), получаемая из пищи, может увеличивать плазменные уровни арахидоновой кислоты, что показывает то, как омега-6 жирные кислоты опосредуют свои эффекты. По-видимому, на данном этапе отмечается так называемый лимит, и употребление арахидоновой кислота позволяет его обойти, дозозависимым образом увеличивая плазменные концентрации арахидоновой кислоты. Снижение доли арахидоновой кислоты в рационе незначительно (244% вместо 217%) увеличивает количество ЭПК, содержащихся в мембранах эритроцитов (при употреблении рыбьего жира) без влияния на ДГК.

Биосинтез

Арахидоновая кислота является причиной того, что линолевая кислота (пищевой источник омега-6 жирных кислот) имеет статус незаменимой жирной кислоты, так как наличие последней требуется в рационе для превращения в ранее указанную. Кроме того, арахидоновая кислота может вырабатываться в качестве катаболита анандамида (один из главных эндогенных каннабиноидов, действующих на каннабиноидную систему, также известный как арахидоноилэтаноламид) за счёт фермента FAAH , может также оказывать некоторые схожие с анандамидом свойства, например, действие на рецепторы TRPV4. Эндоканнабиноид 2-арахидоноилглицерин может также гидролизироваться в арахидоновую кислоты за счёт моноацилглицеринлипазы или аналогичных эстераз . Арахидоновая кислота также вырабатывается с организме при разрушении каннабиноидов.

Регуляция

У пожилых крыс и людей отмечаются меньшие уровни арахидоновой кислоты в организме и нейронах (в плазменных мембранах), что связано с более низкой активностью ферментов биосинтеза, которые преобразуют линолевую кислоту в арахидоновую кислоту. Арахидоновая кислота, по-видимому, снижена у пожилых субъектов в сравнении с более молодыми субъектами за счёт более низкого превращения линолевой кислоты из пищевых продуктов в арахидоновую кислоту.

Эйкозаноиды

Биологическая активация эйкозаноидов

Эйкозаиноды представляют собой метаболиты жирных кислот, которые получают или из арахидоновой кислоты, или из эйкозапентаеновой кислоты и докозагексаеновой кислоты (ЭПК и ДКГ, две жирные кислоты рыбьего жира, принадлежат к классу омега-3 жирных кислот). ДГК, ЭПК и АК, как правило, содержатся в середине триглицеридов позвоночника (в связывающем sn-2 положении) и, таким образом, представлены в свободной форме в мембране, в то время как фермент фосфолипазы А2 активируется; когда этот фермент активируется (припадки , ишемия, стимуляция NMDA-рецептора, а также различные воспалительные цитокины, например, ИЛ-1бета , TNF-альфа, PMA и клетки-стрессоры), а также за счёт недискриминационной природы фермента фосфолипазы А2 (высвобождая ДГК / ЭПК и АК с такой эффективностью), число вырабатываемых эйкозаиноидов зависит от показателя соотношения омега-3 к омега-6 жирных кислот в мембране клеток. Эйкозаноиды представляют собой молекул воздействия, получаемые из длинных цепей жирных кислот, и эйкозаноиды из арахидоновой кислоты высвобождаются из одного и того же фермента, что и жирные кислоты рыбьего жира. Этот этап определяет, какие эйкозаноиды будут использованы в клеточном воздействии, являясь механизмом, лежащим в основе важности пищевого соотношения омега-3 к омега-6 жирным кислотам (так как эйкозаноиды, высвобождаемые в клетке, отражают показатель соотношения в мембране). Подобно жирным кислотам рыбьего жира, арахидоновая кислота может следовать одному из трёх путей высвобождения из мембраны, а именно:

    ЦОГ-зависимый путь для получения PGH2 (родитель простагландинов, и все простагландины представляют собой производные этого пути); простагландины являются сигнальными молекулами с пентациклической структурой (пятиугольной) в боковой цепи жирных кислот;

    LOX-зависимый путь, в ходе которого вырабатываются липоксины и лейкотриены;

    P450 путь, который является дальнейшим субъектом или фермента эпоксигеназы (для выработки эпоксиэйкозатриеновых кислот или EET), или фермента гидроксилазы (для выработки гидроксизаэйкозатриеновых кислот или HETE).

Арахидоновая кислота может принимать один из трёх путей после своего высвобождения; ЦОГ-зависимый путь (для простагландинов), LOX-зависимый путь (для липоксинов и лейкотриенов) или один из двух маршрутов P450 пути для образования EET или HETE. Все эти классы сигнальных молекулы известны как омега-6 эйкозаноиды.

Простагландины

После высвобождения из клеточной мембраны за счёт фосфолипазы А2, арахидоновая кислота превращается в простагландин Н2 (PGH2) за счёт синтаз 1 и 2 эндопероксид Н (альтернативные название для ферментов циклооксигенгазы ЦОГ1 и ЦОГ2); в ходе этого процесса отмечается использование молекул кислорода для превращения арахидоновой кислоты в нестабильный промежуточный перекисный продукт PGG2, который затем пассивно превращается в PGH2; PGH2 служит в качестве промежуточного родительского вещества для всего полученных из АК простагландинов (подмножество эйкозаноидов). Этот первый этап синтеза эйкозаноидов является одной из причин противовоспалительных и антитромбоцитарных эффектов ингибиторов ЦОГ (например, аспирина), что предотвращает эйкозаноиды АК от снижения выработки PGH2 . В отношении ферментов, которые опосредуют это преобразование, ЦОГ2 является индуцируемой формой, которая может активироваться в ответ на воспалительные стрессов в течение 2-6 часов в различных клетках , хотя это может выражаться в базальных условиях в некоторых клетках (клетках головного мозга, яичек, почек, известны как плотные пятна), в то время как ЦОГ1 лишь в целом выражается во всех клетках; это происходит за счёт вариации ЦОГ2, который является индуцируемым вариантом, а ЦОГ1 представляет собой конститутивный вариант. Арахидоновая кислота (АК) высвобождается из клеточной мембраны за счёт фосфолипазы А2, затем превращаясь в PGH2 (простаглиндин) за счёт одного из двух ферментов ЦОГ. Ингибирование этого этапа ингибирует выработку всех получаемых из АК эйкозаинодов, и затем PGH2 синтезируется, переходя к другим эйкозаноидам. PGH2 может превращаться в простагландин D2 за счёт фермента простагландин D синтазы (в присутствии сульгидрильных соединений), и PDG2, как известно, воздействует за счёт рецептора DP2 (изначально изучен на Т-клетках и известен как CRTh2 , относится к GRP44, связываясь с белками Gi или G12). В этом смысле и за счёт передачи сигналов через его рецептор, PGD2 является биологически активным. PGD2 может превращаться в PGF2альфа, который связывается со своим рецептором (рецептор PGF2альфа), как и с рецептором DP2, хотя в 3,5 раза слабее, чем с PGF2. Изомер PGF2альфа, известный как 9альфа, 11бета-PGF2 может также быть получен из PGD2 , являясь эквивалентом с эффективностью рецептора DP2. PGH2 может превращаться в простагландин D2, который является одним из нескольких метаболических «ветвей» простагландинов. После превращения в PGD2, происходит дальнейший метаболизм 9альфа, 11бета-PGF2 и PGF2альфа, который может вызывать проявление эффектов всех трёх молекул. PGH2 (родительский простагландин) может так превращаться в простагландин Е2 (PGE2) за счёт фермента PGE синтазы (из которых мембрана связывается с mPGES-1 и mPGES-2 и цитозольным cPGES), причём дальнейший метаболизм PGE2 приводит к образованию PGF2. Интересно, что селективное ингибирование индуцируемого фермента (mPGES-1), по-видимому, ослабляет выработку PGE2 без воздействия на снижения концентраций других простагландинов PGH2, что недискриминационным образом подавляет ферменты ЦОГ, которые, в свою очередь, подавляют все простагландины; ингибирование выработки PGE2 вызывает небольшую рекомпенсацию и увеличение уровней PGI2 (за счёт ЦОГ2) . PGE2, как правило, вовлечён в природу боли, поскольку она выражает с помощью сенсорных нейронов, воспалений, а также потенциальной потерей мышечной массы. Существует четыре рецептора для простагландина E2, которые называются EP1-4, каждый из которых является рецептором G-белков. EP1 соединён с Gq/11 белком, и его активация может увеличить активность фосфолипазы С (вырабатывая IP3 и диацилглицерин за счёт активации протеинкиназы C). Рецепторы EP2 и EP4 в сочетании с Gs-белком могут активировать аденил циклазу (креатин cAMP и активация проетеинкиназы А). Рецепторы EP3, по-видимому, являются чуть более сложными (время сращивания альфа, бета и гамма вариантов; EP3альфа, EP3бета и EP3гамма), все в сочетании с Gi, что подавляет активность аденилциклазы (и, таким образом, выступает против EP2 и EP4), за исключением EP3гамма, который соединяется с белками Gi и Gs (ингибирование и активация аденилциклазы) . Группа ферментов, известных как PGE-синтаза, но, в особенности, mPGES-1, превращает родительский простагландин в PGE2, который играет роль в способствовании воспалению и восприятию боли. PGE2 активирует рецепторы простагландина E (EP1-4). PGH2 (родительский простагландин) может быть субъектом фермента синтазы простациклина и может преобразовываться в метаболит, известный как простациклин или PGI2, который затем превращается в 6-кето-PGF1альфа (затем превращается в мочевой метаболит, известный как 2,3-динор-6-кето Простагландин F1альфа). PGI2, как известно, активирует рецептор I простаноид (PI), который экспрессируется в эндотелии, почках, тромбоцитах и головном мозге . Выработка простациклина ослабляет про-тромбоцитную функцию тромбоксанов (смотрите следующий раздел). PGH2 может превращаться в PGI2, который также называется простациклином, и затем этот простагландин воздействует за счёт рецептора PI. Отмечается некоторая связь с классом простагландинов, которая всё также базируется на родительском простагландине, когда PGH2 выступает субъектом фермента, известного как тромбоксансинтаза, который превращается в тромбоксан А2. Тромбоксан А2 (TxА2) воздействует через рецепторы T-простаноиды (TP), которые являются связанными с G-белками рецепторами с двумя сплайс-вариантами (TPальфа и TPбета), связанными с Gq, G12/13. Тромбоксан А2 больше всего известен за счёт своей выработки в активированным тромбоцитах в те периоды, когда тромбоциты стимулируются, и арахидоновая кислота высвобождается, а её подавление ингибиторами ЦОГ (а именно аспирином) лежит в основе антитромбоцитарных эффектов ингибирования ЦОГ. Тромбоксан А2 является метаболитом родительского простагландина (PGH2), который действует на Т-простаноидные рецепторы, наиболее известных как образующих тромбоциты, усиливая свёртываемость крови (ингибирование тромбоксана А2 лежит в основе антитромбоцитарного благотворного влияния аспирина).

Эпокси / Гидроксиэйкозатриеновые кислоты

Эпоксиэйкозатриеновые кислоты (EET) представляют собой эйкозаноидные метаболиты, которые вырабатываются в тот момент, когда арахидоновая кислота является субъектом P450 пути и затем сразу же субъектом фермента эпоксигеназы; гидроксиэйкозатриеновые кислоты (HETE) также являются метаболитами P450 пути, но субъектами фермента гидроксилазы вместо фермента эпоксигеназы. HETE включает преимущественно 19-HETE и 20-HETE. EET включает 5,6-EET (которые превращаются в 5,6-DHET за счёт растворимого фермента эпоксидной гидроксилазы), 8,9-EET (также превращается, но в 8,9-DHET), 11,12-EET (в 11,12-DHET) и 14,15-EET (14,15-DHET). Путь P450 опосредует синтез EET и HETE.

Лейкотриены

LOX-путь (для подтверждения, простагландины за счёт COX-пути, а EET и HETE за счёт P450 пути) основными метаболитами эйкозаноидов являются лейкотриены. Арахидоновая кислота напрямую превращается ферментами LOX в новый метаболит 5-гидропероксиэйкозатриеновую кислоту (5-HPETE), которая затем превращается в лейкотриен А4. Лейкотриен А4 может принимать один из двух маршрутов: либо превращение в лейкотриен В4 (LTB4) за счёт добавления водной группы, либо превращение в лейкотриен С4 за счёт глутанион S-трансферазы. Если он превращается в метаболит C4, он может затем превращаться в лейкотриен D4 и потом в лейкотриен E4. Лейкотриены могут образовываться вблизи ядер. LOX-путь, как правило, опосредует синтез лейкотриенов.

Фармакология

Сыворотка крови

Употребление 240-720 мг арахидоновой кислоты пожилыми людьми в течение 4 недель может увеличивать плазменные концентрации арахидоновой кислоты в мембране (в течение 2 недель безе последующего эффекта на 4 неделе), однако не было выявлено значительного эффекта в отношении мочевых метаболитов в сывороточных PGE2 и липоксин А4 . Употребление арахидиновой кислоты необязательно увеличивает плазменные уровни эйкозаноидных метаболитов, несмотря на увеличение концентраций арахидоновой кислоты.

Неврология

Аутизм

Расстройства аутистического спектра неврологических состояний связаны обычно с нарушением социального функционирования и коммуникации. Арахидоновая кислота, как было исследовано, а также ДГК из рыбьего жира и АК являются критическими в отношении развития нейронов у новорождённых; нарушения в метаболизме полиненасыщенных жирных кислот, как известно, связывают с расстройствами аутистического характера (несколько ненадёжные данные ). Употребление 240 мг АК и 240 мг ДГК (вместе с 0,96 мг астаксантина в качестве антиоксидантна) в течение 16 недель на примере 13 пациентов с аутизмом (половина дозировки в случае возраста от 6 до 10 лет) не показало никакого снижения показателей шкалы рейтинга СГД и АВС в отношении аутизма, хотя отмечается некоторое улучшение в отношении субшкал социальной изоляции (АВС) и связи (СГД), однако процент пациентов, испытывающих снижение на 50% симптомов незначительно отличался, чем в случае употребления плацебо. Существуют очень ограниченные данные в отношении того, чтобы считать то, что арахидоновая кислота с ДГК рыбьего жира ослабляют симптомы аутизма, хотя, всё же, есть некоторая эффективность в отношении улучшения социальных симптомов, поэтому требуется проведение дополнительных исследований.

Память и обучение

Активация фосфолипазы А2, как отмечается, может содействовать росту аксонов с одновременным повреждением нейронов и их удлинения . Указанные последствия влияния эйкозаноидов (происходящих от арахидоновой кислоты и рыбьего жира, преимущественно от ДГК), и арахидоновая кислота в целом, как отмечается, способствуют росту аксонов за счёт 5-LOX-пути с максимальной эффективностью при дозировке в 100 мкм, хотя при высоких концентрациях (10 мм) этот путь является нейротоксичным за счёт избыточного окисления (предотвращается с помощью витамина Е). Роста нейритов может быть связан с действием на кальциевые каналы . В организме арахидоновая кислота играет роль в продвижении нейронного развития и их удлинении, хотя неестественно высокие концентрации арахидоновой кислоты, по-видимому, являются цитотоксичными. Как отмечается у крыс, активность ферментов, которые превращают линолевую кислоту в арахидоновую кислоту, снижается с возрастом; употребление старыми крысами арахидоновой кислоты в рационе способствует развитию когнитивных функций, причём этот эффект был воспроизведён на относительно здоровых пожилых мужчинах при употреблении 240 мг АК (за счёт 600 мг триглицеридов) по оценке P300 амплитуды и латентности . За счёт снижения выработки арахидоновой кислоты во время старения употребление арахидоновой кислоты может имеет роль усиления когнитивных свойств у пожилых людей (пока что не ясно, если эффект распространяется на молодые субъекты; это представляется маловероятным).

Нервы

Активация фосфолипазы А2, как отмечается, вовлечены в связь иммунных клеток и демиелинизации нейронов, что, возможно, является COX-зависимым механизмом, как, например, целекоксиб (ингибитор COX2); это способствует улучшению нейронных параметров заживления. Этот процесс вовлекает эйкозаноиды омега-3 и омега-6 происхождения .

Сердечно-сосудистые заболевания

Кровоток

Арахидоновая кислота (4,28% от рациона крыс), по-видимому, полностью обращает связанное со старением увеличение вазоконстрикции, индуцированное фенилэфрин у крыс за счёт эндотелиально зависимых механизмов; отмечается некоторое усиление ацетилхолин-индуцируенного вазорелаксирующего эффекта; не отмечается благотворного влияния у молодых крыс. При тестировании пожилых людей (65 лет в среднем), употребление 240 мг арахидоновой кислоты с 240 мг ДГК (одна из жирных кислот рыбьего жира) в течение трёх месяцев привело к улучшению коронарного кровотока в периоды гиперемии, но не в состоянии покоя . Употребление арахидоновой кислоты в пожилом возрасте может нести кардиозащитный эффект за счёт способствования кровотоку, хотя на примере людей данные являются очень скудными.

Скелетные мышцы и производительность

Механизмы

Арахидоновая кислота, как считается, является важным элементом в отношении метаболизма скелетных мышц, так как фосфолипиды в мембране саркоплазм, как считается, отражаются на фоне рациона ; физические нагрузки, по-видимому, сами по себе способствуют изменениям в фосфолипидном содержании мышц (независимо от состава мышечных волокон, связано с более низким соотношением омега 6 к омега 3 жирным кислотам); эйкозаноиды из арахидоновой кислоты взаимодействуют с синтезом мышечного белка за счёт рецепторов. Арахидоновая кислота воздействует на синтез мышечного белка за счёт ЦОГ-2 зависимого пути (предполагает вовлечение простагландинов), что связывают с увеличением простагландина Е2 (PGE2) и PGF(2альфа) , хотя инкубация с изолированными PGE2 и PGF(2альфа) не полностью воспроизводит гипертрофические эффекты арахидоновой кислоты. PGE2 и PGF(2альфа) также индуцируются при физической нагрузке (в частности, при растяжении мышечных клеток in vitro), также это отмечается в сыворотке крови и внутримышечно (в четырёхкратном размере – с 0,95+/-0,26 нг на мл до 3,97+/-0,75 нг на мл) у занимающихся субъектов, у которых нормализация происходит через час после завершения тренировки . Способность рефлекса растяжения для увеличения концентрации PGE2 и PGF(2альфа) может происходить просто из-за растяжения повышения активности ЦОГ-2. Стоит отметить, что употребление 1500 мг арахидоновой кислоты (в сравнении с контрольным рационом, содержащим 200 мг) в течение 49 дней, как выяснилось, увеличивает секрецию PGE2 из стимулированных клеток иммунной системы (на 50-100%) у относительно здоровых молодых людей , но актуальность этого факта по отношению к скелетным мышцам не известна. Это исследование также отмечает, что без стимуляции не было выявлено разницы между группами. Тем не менее, отмечается тенденция к увеличению сывороточной концентрации PGE2, как минимум, у тренированных мужчин при употреблении 1000 мг арахидоновой кислоты в течение 50 дней. Арахидоновая кислота за счёт эйкозаинодов, известных как PGF(2альфа) и PGE2, стимулирует синтез мышечных белков. Они вырабатываются из арахидоновой кислоты, но обычно не образуют соответствующие им связывающие мышцы эйкозаноиды, пока клетки стимулируются стрессром (например, при рефлексе растяжения на мышечной клетке), что затем индуцирует их выработку. Рецептор PGF(2альфа) (FP-рецептор), по-видимому, активируется с помощью ингибиторов ЦОГ1 (ацетаминофен, использованный в этом исследовании), усиливая воздействие PGF(2альфа), которое, как представляется, лежит в основе улучшений синтеза мышечных белков, отмечаемых у пожилых людей при употреблении противовоспалительных препаратов. Употребление арахидоновой кислоты, по-видимому, не влияет на количество FP-рецепторов у молодых людей; в то время как сами по себе физические упражнения могут увеличивать содержание EP3 рецепторов, но не ингибиторов ЦОГ1 и арахидоновой кислоты, по-видимому, они продолжают влиять на процессы. Тем не менее, использование ингибиторов ЦОГ2 (молодыми людьми), как выяснилось, может отменять индуцированные физическими нагрузками увеличения PGF(2альфа) (Ибупрофен и Ацетаминофен) , а также PGE2, которые, как полагают, происходят за счёт превращения PGH2 в эти метаболиты, зависящие от активности ЦОГ2. За счёт выработки этих эйкозаноидов, которые зависят от ферментов ЦОГ2, ингибирование этого фермента, как считается, снижает анаболические эффекты физических нагрузок при принятии до них. Арахидоновая кислота (как и ЭПК из рыбьего жира), как отмечается, не ослабляет усвоение глюкозы в изолированных мышечных клетках, и 10 мкм жирных кислот может ослаблять индуцированную насыщенными жирами инсулиновую устойчивость ; этот феномен отмечается при использовании насыщенных жиров с 18 углеродными цепями или больше, что, по-видимому, не относится к полиненасыщенным жирным кислотам с равной длиной цепи; этот связано с ростом внутриклеточных керамидов, что способствует ухудшению воздействию Akt, снижая GLUT4-опосредованное поглощение глюкозы из инсулина. Арахидоновая кислота и омега-3 полиненасыщенные кислоты связаны с улучшенной чувствительностью инсулина в клетках мышц, что может быть вторичным по отношению к снижению уровней насыщенных жиров в липидной мембране, снижая внутриклеточные концентрации керамидов. Вполне возможно, что это не связано с эйкозаинодами или соотношением омега-3 к омега-6 жирным кислотам.

При физических нагрузках, как известно, высвобождаются вазоактивные метаболиты, которые вызывают расслабление кровеносных сосудов, из которых наряду с некоторыми общими вазодилатационными агентами (оксидом азота, аденозином, ионами водорода), простаноиды также высвобождаются. Уровни арахидоновой кислоты в сыворотке крови остро подавляются при физических нагрузках (нормализуясь через несколько минут); отмечаются увеличения некоторых эйкозаноидов арахидоновой кислоты, включая 11,12-DHET, 14,15-DHET, 8,9-DHET и 14,15-EET при цикличности в 80% VO2 max в остром порядке; более высокие мочевые концентрации 2,3-динор-6-кето-простагландин F1альфа (показатель более высоких концентраций PGI2 и 6-кето-PGF1альфа) были отмечены, как минимум, спустя 4 недели тренировок у ранее нетренированных молодых людей.

Вмешательства

На примере 31 тренированных мужчин, являющихся субъектами программы по тяжёлой атлетике и специализированного рациона (избыток 500 ккал при 2 г белка на кг массы тела), употребляемого либо с 1 г арахидоновой кислотой или плацебо, было выявлено спустя 50 дней небольшое увеличение пиковой мощи (на 7,1%) и средней мощи (3,6%) в ходе тестирования Wingate; отмечается отсутствие позитивного влияния на мышечную массу или поднятие тяжестей (жим лёжа или жим ногами).

Метаболизм костной ткани и скелет

Механизмы

Простагландин F2 альфа (PGF2альфа) способен к позитивному влияния на рост костей за счёт своего действия в качестве митогена на остеокласты.

Воспаление и иммунология

Артрит

У пациентов с ревматоидным артритом снижение арахидоновой кислоты из пищевых источников (со 171 мг до 49 мг; увеличение эйкозапентаеновой кислоты является незначительным) и линолевой кислоты (с 12,7 г до 7,9 г) способно снижать болевые симптомы в рамках ревматоидного артрита (на 15%), улучшая эффективность употребления рыбьего жира с 17% до 31-37%. Ограничение пищевого потребления арахидоновой кислоты, как предполагается, способствует проявлению симптомов ревматоидного артрита, увеличивая эффективность употребления рыбьего жира.

Взаимодействия с гормонами

Тестостерон

Кортизол

У тренированных мужчин употребление 1000 мг арахидоновой кислоты в течение 50 дней не привело к значительным изменениям концентраций кортизола в сравнении с плацебо.

Взаимодействия с лёгкими

Астма

Простагландин D2 (PGD2) является сильнодействующим на бронхи веществом, причём несколько мощным, чем схожий простагландин PGF2альфа (в 3,5 раза) и гораздо более мощным, чем гистамин сам по себе (в 10,2 раз). Считается, что воздействие через рецепторы DP-1 и DP-2 опосредует про-астматические эффекты этих простагландинов, так как, как известно, эти рецепторы, а именно их отмена, связана со снижением воспаления дыхательных путей. Эйкозаноиды арахидоновой кислоты, по-видимому, являются про-астматическими.

Взаимодействия с эстетическими параметрами

Волосы

Простагландин D2 (из арахидоновой кислоты) и фермент, который вырабатывает его (синтаза простагландин D2) в 10,8 раза выше в коже головы мужчин с андрогенной алопецией в сравнении с частями головы, где есть волосы; по-видимому, вещество способствует подавлению роста волос за счёт воздействия на рецептор DP2 (также известный как GRP44 или CRTh2), причём рецептор 1 PGD2 не связан с подавлением роста волос, а простагландин 15-ΔPGJ2 обладает подавляющими эффектами. Избыток фермента способен имитировать андрогенную алопецию, предполагая, что фермент является терапевтической мишенью, и этот фермент, как известно, сильно реагирует на андрогенное воздействие . Простагландин D2 и его метаболиты (вырабатываемые из простагландина H2 за счёт фермента синтазы простагландина D2) увеличиваются в области андрогенной алопеции в сравнении с областями, покрытыми волосами; фермент сам по себе увеличивает активность андрогенов. Воздействие через рецептор DP2 (названный в честь простагландина D2), по-видимому, подавляет рост волос. Воздействие простагландина F2альфа (PFG2альфа; связывается с рецептором PGF2альфа при концентрации 50-100 нм), по-видимому, обеспечивает рост волос. По-видимому, отмечается большее наличие простагландина E2 (PGE2) в отделах головы, покрытой волосами у лысеющих мужчин в сравнении с облысевшими областями (в 2,06 раза). Увеличение PGE2, по-видимому, является одним из возможных механизмов миноксидила в обеспечении роста волос . Другие простагландины получают из арахидоновой кислоты.

Безопасность и токсикология

Беременность

Арахидоновая кислота, по-видимому, увеличивается в молочной железе в ходе перорального её употребления (или из пищевых продуктов, или из специальных добавок дозозависимым образом), хотя употребление ДГК (из рыбьего жира) изолированно может снижать концентрацию арахидоновой кислоты в грудном молоке. Увеличение, как отмечается, было зафиксировано на уровне 14-23% через 2-12 недель (употребление 220 мг арахидоновой кислоты), в то время как употребление 300 мг арахидоновой кислоты в течение недели оказалось неэффективным, не увеличив значительным образом концентраций. Эта очевидная задержка эффекта происходит за счёт жирных кислот, получаемых из так называемых запасов матери, нежели из непосредственно её текущего рациона . Концентрации арахидоновой кислоты в грудном молоке коррелируют с рационом, в ходе некоторых исследований были отмечены низкие концентрации при снижении пищевого употребления арахидоновой кислоты в целом; увеличения концентраций в грудном молоке отмечаются при повышенном употреблении арахидоновой кислоты . Арахидоновая кислота, как известно, накапливается в грудном молоке матерей, и её концентрации в грудном молоке коррелируют с пищевым употреблением.

Которая относится к насыщенным кислотам Омега-6. Специалисты до сих пор ведут споры, насколько незаменимым является данное вещество. Ведь оно вырабатывается человеческим организмом, хоть и не в больших количествах.

Арахидоновая кислота: где содержится

Источников данного компонента предостаточно. Арахидоновая кислота встречается в составе многих продуктов: больше всего данного вещества именно в жирной пище. Получить ее можно из яиц, мяса дикой или же домашней птицы, из свинины и красного мяса. Стоит отметить, что вещество является компонентом жиров даже в постных блюдах.

Очень важно корректировать рацион питания, так как арахидоновая кислота содержится в жирах тех продуктов, которые употребляются человеком ежедневно. Избыток подобных веществ может отрицательно сказаться на здоровье.

Конечно, арахидоновая кислота, биологическая роль которой до конца еще не изучена, является полиненасыщенной кислотой. Однако не стоит считать данное вещество безусловно полезным. Ведь это компонент жиров, употребление которого в большом количестве наносит организму вред.

Биологическая роль

Большая часть свойств арахидоновой кислоты доказана. Однако некоторые из них еще остаются загадкой. Поскольку данное вещество является незаменимой жирной кислотой, ученые проводят клинические исследования, которые посвящены эффективности и роли компонента в определенных отраслях современной медицины.

Одно из направлений - влияние на прогрессирование болезни Альцгеймера арахидоновой кислоты. Исследования пока проводятся на ранних стадиях данного недуга. Однако уже есть предварительные данные, которые указывают на то, что препараты на основе данного вещества можно назначать для предупреждения, а также для замедления прогрессирования заболевания у пациентов с точным диагнозом.

Арахидоновая кислота принимает участие в синтезе простагландина, поддерживающего работу мышечных тканей. Если говорить конкретно, то подобные вещества обеспечивают правильное расслабление и сокращение волокон во время нагрузок. Такая функция важна для каждого человека, но особенно для бодибилдеров и спортсменов.

Помимо этого, простагландины регулируют просвет русла сосудов, а также способствуют созданию кровеносных сосудов, осуществляют контроль над артериальным давлением, моделируют воспаление в мышечных тканях. Одни формы данного вещества улучшают свертываемость крови, а другие, наоборот, предотвращают тромбообразование в тех местах, где это нежелательно.

Стоит отметить, что арахидоновая кислота, формула которой - C 20 H 32 O 2 , позволяет предупредить чрезмерную выработку в пищеварительном тракте соляной кислоты. Помимо этого, вещество стимулирует синтез защитной слизи, предотвращающей развитие язвенной болезни, а также других проблем, связанных с работой ЖКТ.

Еще одно достоинство арахидоновой кислоты - регенерация и рост мышечных волокон и скелетной мускулатуры. Стоит отметить, что без данного вещества фактически невозможно нормальное физическое развитие любого ребенка.

Способность вещества вызывать воспаление

Как уже было сказано, арахидоновая кислота способствует возникновению воспалительного процесса в мышцах и других тканях. Конечно, это не всегда наносит вред организму. Исключением в данном случае является наличие воспалительного заболевания. Уменьшить выраженность подобного процесса в тканях можно. Достаточно принять обычный аспирин. Если таблеток нет под рукой, то можно включить в свой рацион ту пищу, которая обладает противовоспалительным эффектом.

Процессы в мышечных волокнах, вызванные арахидоновой кислотой, стоит взять на вооружение тяжелоатлетам и бодибилдерам. Существует предположение, что воспаление, вызванное данным веществом, делает тренировки более эффективными. Ведь мышечные ткани получают дополнительный сигнал.

Где применяется кислота?

Благодаря свои свойствам арахидоновая кислота, формула которой указана выше, получила широкое применение. Данное вещество используют для терапии многих недугов, среди которых болезнь Альцгеймера, язвенная болезнь, ухудшение памяти и свертываемости крови, артериальная гипертензия, снижение умственных способностей, сниженная родовая деятельность, а также мышечная слабость. Арахидоновая кислота вызывает воспаление в мышечных тканях.

Побочные эффекты

Употребление арахидоновой кислоты положительным образом сказывается на состоянии организма. Однако вещество, как и многие другие, обладает побочными эффектами. При частом и неконтролируемом употреблении препаратов арахидоновой кислоты наблюдается бессонница, нарушение кровообращения мозгового, утомление, заболевания сердца, шелушение кожи, ломкость волос. Помимо этого, вещество стимулирует родовую деятельность и способствует повышению в крови уровня холестерина.

Арахидоновая кислота является , относится к классу омега-6-ненасыщенных жирных кислот. Любопытно, что существуют разногласия касательно того, стоит ли считать арахидоновую кислоту незаменимой, ведь она в небольшом количестве вырабатывается в человеческом организме.

Формально, для причисления жирной кислоты к незаменимым, организм должен получать ее из внешней среды, будучи не в состоянии ее синтезировать. Однако, поскольку наше тело не может полностью покрыть потребность в арахидоновой кислоте за счет эндогенного синтеза, большая часть медицинских сайтов и сайтов, посвященных пищевым добавкам, относит арахидоновую кислоту скорее к незаменимым, нежели и заменимым жирным кислотам.

В связи с этим в рамках данного материала мы также будем называть арахидоновую кислоту незаменимой. В статье будут перечислены источники арахидоновой кислоты, ее функции, а также спорные вопросы, касающиеся данного компонента питания.

Возможные побочные эффекты арахидоновой кислоты

  • Бессонница
  • Утомление
  • Нарушение мозгового кровообращения
  • Заболевания сердца
  • Ломкость волос
  • Шелушение кожи
  • Повышение уровня холестерина
  • Стимуляция родовой деятельности

Области применения арахидоновой кислоты

  • Болезнь Альцгеймера
  • Артериальная гипертензия
  • Повышение умственных способностей
  • Свертываемость крови
  • Воспаление
  • Память
  • Мышечная сила
  • Язвенная болезнь
  • Стимуляция родов

Откуда получить арахидоновую кислоту?

Арахидоновая кислота содержится в жирных продуктах и является компонентом жиров постных блюд. Вы можете получить арахидоновую кислоту из красного мяса, свинины, домашней или дикой птицы, яиц и многих других яств. Поскольку арахидоновая кислота составляет определенную долю жиров в повседневных продуктах, важно корректировать рацион питания, поскольку избыток жиров может негативно сказываться на состоянии здоровья.

Так как арахидоновая кислота является полиненасыщенной, многие ошибочно считают ее «полезным жиром». Истина заключается в том, что эта жирная кислота поступает в составе животных жиров, и, как и все жиры, при чрезмерном потреблении приносит организму больше вреда, нежели пользы.

Препараты арахидоновой кислоты

Еще один источник арахидоновой кислоты – пищевые добавки. Вы можете принимать арахидоновую кислоту в виде таблеток, капсул или порошка. Наиболее распространенной является порошковая форма, так как она лучше всего усваивается организмом. Заметим, что добавка горька на вкус, и многие разводят порошок в цитрусовом соке, для того чтобы хоть как-то скрыть эту горечь.

Также вы обнаружите, что арахидоновая кислота продается как в чистом виде, так и в составе комплексных препаратов. Цена на эти продукты изменяется в широком диапазоне, от 10 до 100 долларов, в зависимости от того, какой объем вы покупаете, и что входит в состав комплекса, помимо арахидоновой кислоты.

Биологическая роль арахидоновой кислоты

Многие функции арахидоновой кислоты уже доказаны, а некоторые до сих пор находятся на стадии изучения. Поскольку арахидоновая кислота является незаменимой жирной кислотой, в настоящее время проводится несколько независимых клинических исследований, посвященных изучению роли и эффективности этой кислоты в различных отраслях медицины.

Одной из таких областей является влияние арахидоновой кислоты на прогрессирование болезни Альцгеймера при использовании на ранних стадиях заболевания. Предварительные данные показывают, что арахидоновая кислота может назначаться как для предупреждения болезни Альцгеймера, так и для замедления темпов прогрессирования недуга при лечении пациентов с уже диагностированной патологией.

Арахидоновая кислота участвует в синтезе простагландинов, которые поддерживают работу мышц. Конкретно простагландины обеспечивают правильное сокращение и расслабление мышечных волокон во время нагрузки. Данная функция имеет значение для всех и каждого, но особенно она важна для спортсменов и бодибилдеров.

Простагландины помогают регулировать просвет сосудистого русла и способствуют образованию новых кровеносных сосудов, контролируют артериальное давление и моделируют воспаление в мышцах. Одна из форм простагландинов повышает свертываемость крови, в то время как иная форма, напротив, предотвращает повышенное тромбообразование там, где ему не место. Эта форма простагландина, известная как PGE2, также используется для стимуляции родовой деятельности у беременных женщин.

Арахидоновая кислота предупреждает чрезмерный синтез соляной кислоты в пищеварительном тракте, кроме того, она повышает выработку защитной слизи, которая помогает предотвратить развитие язвенной болезни и других проблем с желудком, в том числе и желудочных кровотечений.

Помимо этого арахидоновая кислота способствует росту и регенерации скелетной мускулатуры и мышечных волокон. Особенно велика ее роль в развитии костно-мышечной системы у детей; без арахидоновой кислоты адекватное физическое развитие ребенка фактически невозможно.

Арахидоновая кислота и воспаление

Эта жирная кислота является провоспалительной, что означает, что она способствует развитию воспалительных процессов в тканях и мышцах. Но это далеко не всегда плохо, за исключением тех случаев, когда вы страдаете воспалительными заболеваниями. А выраженность воспалительной реакции может быть уменьшена приемом аспирина, других добавок или продуктов, обладающих противовоспалительным действием.

В случае с арахидоновой кислотой мы имеем дело с воспалением, которое бодибилдеры и тяжелоатлеты должны взять на вооружение. Существует предположение, что стимулирующее действие арахидоновой кислоты в процессе тренировочных сессий связано с тем, что мышцы получают дополнительный воспалительный сигнал, который повышает эффективность тренировок.

Правда, данное предположение не было подтверждено клиническими исследованиями. Напротив, в ряде испытаний никакого дополнительного воспаления после тренировочных сессий обнаружено не было. Однако данные исследования в Университете Бейлор показали, что ежедневный прием 1 200 мг арахидоновой кислоты действительно приводит к увеличению пиковой мышечной силы и мышечной выносливости (30 человек принимали препарат на протяжении 50 дней).

Заметим, что это исследование не было достаточно продолжительным, для того чтобы достоверно доказать эффективность арахидоновой кислоты, и результаты этой работы считаются предварительными. В настоящее время Университет Бейлор не оценивает отдаленные результаты, так как первоначально они ставили перед собой иную цель — доказать, что прием арахидоновой кислоты НЕ дает никаких преимуществ тяжелоатлетам.

Арахидоновая кислота и повышение умственных способностей

В исследованиях, проведенных Американским Национальным институтом Здоровья Ребенка и Развития Человека, изучалось влияние арахидоновой кислоты на развитие мозга малышей в возрасте от 18 месяцев. Это 17-недельное исследование показало отсутствие значительного повышения уровня интеллекта у детей данной группы. Целью дальнейших исследований является изучение наличия прочих положительных эффектов.

А вот исследования, проведенные в прошлом, уже подтвердили благотворное влияние арахидоновой кислоты на способности к запоминанию у взрослых. Именно эти работы инициировали проведение исследований по влиянию арахидоновой кислоты на развитие умственных способностей у детей.

Резюме. Арахидоновая кислота:

  • Усиливает свертываемость крови при травмах
  • Улучшает память у взрослых
  • Способствует правильной работе мышц
  • Активно изучалась в недавнем прошлом
  • Способствует физическому и умственному развитию ребенка
  • В настоящее время исследуются новые сферы ее применения
  • Незаменимая жирная кислота
  • Используется для стимулирования родовой деятельности
  • Может помогать тяжелоатлетам в достижении новых целей
  • Может оказывать положительный эффект при болезни Альцгеймера

Побочные эффекты и проблемы, связанные с арахидоновой кислотой

Как уже было сказано, источником арахидоновой кислоты являются жиры. Уже доказано, что высокие дозы арахидоновой кислоты могут привести к патологии сердечнососудистой системы, инфаркту миокарда и нарушению мозгового кровообращения. Более того, в слишком высокой концентрации арахидоновая кислота становится токсичной и может стать причиной смерти. По этой причине не стоит принимать арахидоновую кислоту без наблюдения врача.

Передозировка арахидоновой кислоты может проявляться следующими субъективными симптомами и клиническими признаками: усталость, бессонница, ломкость волос, шелушение кожи, высыпания на коже, запор, сердечные приступы и повышение уровня холестерина.

Поскольку арахидоновая кислота может стимулировать родовую деятельность, ее ни в коем случае нельзя принимать беременным, а также женщинам, которые пытаются зачать ребенка. В этих случаях прием препарата может привести к выкидышу. Кроме того, арахидоновая кислота противопоказана при следующих заболеваниях:

  • Онкологическая патология
  • Астма
  • Повышение уровня холестерина
  • Заболевания сердечнососудистой системы
  • Увеличение предстательной железы
  • Воспалительные заболевания
  • Синдром раздраженного кишечника

В любом случае, вы не должны начинать прием арахидоновой кислоты без ведома и разрешения вашего доктора. Это особенно актуально, если вы страдаете каким-либо заболеванием или принимаете лекарственные препараты.

Широко распространено заблуждение, что, принимая натуральные препараты, мы находимся в безопасности. Не забывайте, ядовитый плющ тоже натурален, но не станем, же мы его есть только из-за того, что он растет на природе.

Р. Поль Роберт сон (R. Paul Robertson)

Образование эйкосаноидов. Простагландины - первые из выделенных метаболитов арахидоновой кислоты - названы так потому, что впервые они были выявлены в сперме. Считалось, что они секретируются предстательной железой. По мере того как выявлялись другие активные метаболиты, становилось очевидным наличие двух основных путей их превращения - циклооксигеназного и липооксигеназного. Эти пути синтеза схематически представлены на рис. 68-1, а строение типичных метаболитов - на рис. 68-2. Все продукты как циклооксигеназного, так и липооксигеназного происхождения называют эйкосаноидами. Продукты циклооксигеназного пути - Простагландины и тромбоксан - простаноидами.

Начальный этап синтеза в обоих метаболических путях включает в себя отщепление арахндоновой кислоты от фосфолипида в плазматической мембране клеток. Затем свободная арахидоновая кислота может быть окислена циклооксигеназным или липооксигеназным путем. Первым продуктом циклооксигеназного пути является циклический эндопероксид простагландин G2 (ПГG2), который превращается в простагландин Н2 (ПГН2). ПГG2 и ПГН2 служат ключевыми посредниками в процессе образования физиологически активных простагландинов (ПГD2, ПГЕ2, ПГF2 и и ПГI2) и тромбоксана А2 (ТКА2). Первым продуктом 5-липооксигеназного пути является 5-гидропероксиэйкосатетраеноевая кислота (5-ГПЭТЕ), которая играет роль посредника при образовании 5-гидроксиэйкосатетраеноивой кислоты (5-ГЭТЕ) и лейкотриенов (ЛТА4, ЛТВ4, ЛТС4, ЛТD4 и ЛТE4). Две жирные кислоты, отличающиеся от арахидоновой кислоты, 3,11,14-эйкосатриеноивая кислота (дигомо-?-линоленовая кислота) и 5,8,11,14,17-эйкосапентаеновая кислота, могут превращаться в метаболиты. близкие по строению к этим эйкосаноидам. Простаноидные продукты первого субстрата обозначаются индексом 1; лейкотриеновые продукты этого субстрата-индексом 3. Простаноидные продукты второго субстрата имеют обозначение 3, в то время как лейкотриеновые продукты этого субстрата обозначаются индексом 5.

Рис. 68-1. Схема метаболизма арахидоновой кислоты. Различные лекарственные средства действуют на разные ферментные этапы, угнетая реакцию. Основными путями метаболизма являются циклооксигеназный и липооксигеназный. Фосфолипазу А2 угнетают кортикостероиды и мепакрин; циклооксигеназу - определенные салицилаты, индометацин и ибупрофен; липооксигеназу - беноксапрофен и нордигидрогуайаретиковая кислота (НДГК). Имидазол предотвращает синтез ТКА2.

Арахидоновая кислота образует простагландины, обозначаемые индексом 2, и лейкотриены, обозначаемые индексом 4. Индексы означают число двойных связей между атомами углерода в боковых цепях.

Фактически все клетки обладают необходимыми субстратами и ферментами для образования некоторых метаболитов арахидоновой кислоты, но различия ферментного состава тканей обусловливают различия в образуемых ими продуктах. Эйкосаноиды синтезируются по мере их непосредственной необходимости и не хранятся- в значительных количествах для последующего высвобождения.

Циклооксигеназные продукты. Простагландины D2, Е2, F2? и I2 образуются из циклических эндопероксидов ПГG2 и ПГH2. Из числа этих простагландинов ПГЕ2 и ПГI2 обладают наиболее широким спектром физиологического действия. ПГЕ2 оказывает заметное влияние внутри тканей и синтезируется многими из них. ПГI2 (называемый также простациклином) является основным продуктом арахидоновой кислоты в эндотелиальных и гладкомышечных клетках стенок сосудов и в некоторых несосудистых тканях. ПГI2 служит вазодилататором и угнетает агрегацию тромбоцитов. Считают, что ПГD2 также играет роль в агрегации тромбоцитов и функции головного мозга, а ПГF2? - в функции матки и яичников.

Рис. 68-2. Строение типичных биологически активных эйкосаноидов.

Тромбоксансинтетаза катализирует включение атома кислорода в кольцо эндоперекиси ПГН2 для образования тромбоксанов. TKA2 синтезируется тромбоцитами и усиливает агрегацию тромбоцитов.

Липооксигеназные продукты. Лейкотриены и ГЭТЕ являются конечными продуктами липооксигеназного пути. Лейкотриены обладают гистаминоподобным действием, включая индуцирование повышенной проницаемости сосудов и бронхоспазма, и, по-видимому, оказывают влияние на активность лейкоцитов. ЛТС4, ЛТD4 и ЛТE4 были идентифицированы как медленнореагирующие вещества анафилаксии (МРВ-А). (Патофизиология лейкотриенов детально обсуждается в гл. 202.)

Действие лекарственных средств на синтез эйкосаноидов. Многие лекарственные средства блокируют синтез эйкосаноидов путем угнетения одного или нескольких ферментов на путях их биосинтеза. Глюкокортикоиды и противомалярийные средства, такие как акрихин, препятствуют отщеплению арахидоновой кислоты от фосфолипидов (см. рис. 68-1). Циклооксигеназа непосредственно угнетается нестероидными противовоспалительными средствами, включая салицилаты, индометацин и ибупрофен. Беноксапрофен (Benoxaprofen)-еще одно нестероидное противовоспалительное средство - угнетает опосредуемое липооксигеназой превращение арахидоновой кислоты в ГПЭТЕ. Антидепрессант трансамин угнетает превращение циклических эндоперекисей в ПГI2, а имидазол - синтез тромбоксана. Тот факт, что какое-то лекарственное средство подавляет синтез определенного эйкосаноида, не означает, что действие данного лекарственного средства непосредственно приводит к дефициту этого продукта. Большинство этих лекарственных средств такого рода угнетают ранние этапы путей синтеза и поэтому блокируют образование не одного, а нескольких продуктов. Кроме того, некоторые из этих лекарственных средств оказывают и другие влияния. Например, индометацин не только угнетает образование циклических эндоперекисей, осуществляемое при помощи циклооксигеназы, но может также и нарушать транспорт кальция через мембраны, угнетать зависимые от циклического аденозинмонофосфата (циклического АМФ) протеинкиназу и фосфодиэстеразу, а также угнетать один из ферментов, ответственных за расщепление ПГЕ2. Не существует ни одного истинно специфичного ингибитора синтеза и ни одного специфичного антагониста рецепторов для отдельных метаболитов арахидоновой кислоты, которые можно было бы использовать в терапевтических целях. Отсутствие таких лекарственных средств является важным барьером, мешающим установить роль этих метаболитов в физиологических и патофизиологических процессах.

Метаболизм и количественный анализ эйкосаноидов. Метаболиты арахидоновой кислоты быстро диссеминируют in vivo. Простагландины серий Е и F, несмотря на то что они являются химически стабильными веществами, почти полностью расщепляются во время прохождения через печень или легкие. Таким образом, по существу все количество неметаболизированного ПГЕ2, определяемое в моче, образуется в результате секреции из почек и семенных пузырьков, в то время как содержащиеся в моче метаболиты ПГЕ2 характеризуют его синтез (ПГЕз) во всем организме. Как ПГI2, так и ТКА2 химически нестабильны и также подвергаются быстрой диссимиляции. Поскольку продолжительность жизни ПГЕ2, ПГI2 и ТКА2 in vivo невелика, измерение количества их неактивных метаболитов обычно используют в качестве показателя скорости их образования. ПГЕ2 превращается в 15-кето-13,14-дигидро-ПГЕ2; ПГI2 - в 6-кето-ПГF1?, а ТКА2 - в ТКВ2. Существует пять методов измерения содержания метаболитов арахидоновой кислоты в физиологических жидкостях: количественное определение биологической активности, радиоиммунный метод, хроматографический метод, определение числа рецепторов и масс-спектрометрия. При использовании любого из этих методов необходимо соблюдать определенные предосторожности при обращении с образцами биологических жидкостей, поскольку синтез простагландинов может быть повышенным во время сбора этих образцов. Например, если кровь свернулась или тромбоциты не были тщательно отделены от плазмы, то образование больших количеств ПГЕ2 и ТКА2 во время исследования может привести к получению ошибочных результатов. Добавление ингибитора синтеза простагландина в пробирку для сбора крови сведет эту проблему к минимуму.

Физиология. Простагландины и лейкотриены имеют специфические рецепторы на плазматических мембранах клеток печени, желтого тела, надпочечников, липоцитов, тимоцитов, матки, панкреатических островков, тромбоцитов и эритроцитов. Большинство этих рецепторов обладает специфичностью к эйкосаноидам определенного типа. Например, рецептор ПГЕ на плазматической мембране клеток печени связывает обладающие высоким сродством ПГЕ1 и ПГЕ2, но не связывает Простагландины классов A, F и I. Пострецепторные механизмы, с помощью которых связывание простагландинов изменяет функцию клетки, недостаточно ясны. Нормальное физиологическое функционирование эйкосаноидов не опосредуется через плазму крови. Вместо этого они действуют как местные, межклеточные и/или внутриклеточные модуляторы биохимической активности в тканях, в которых они образуются (например, пара.кринная функция). Эйкосаноиды являются аутокоидами, а не гормонами. Большинство из них обладает очень непродолжительным периодом жизни в циркулирующей крови вследствие их химической-нестабильности и/или быстрого расщепления.

Липолиз. ПГЕ2, синтезируемый липоцитами, имеет специфические рецепторы в липоцитах и является сильным эндогенным ингибитором липолиза. Поскольку для стимуляции липолиза гормонами необходимо образование циклического АМФ, было довольно подробно исследовано взаимодействие между ПГЕ и аденилатциклазой. ПГЕ угнетает липолиз путем снижения образования циклического АМФ в ответ на действие адреналина, адренокортикотропного гормона (АКТГ), глюкагона и тиреотропного гормона (ТТГ). Таким образом, ПГЕ может действовать как эндогенное антилиполитическое вещество, препятствуя стимуляции гормонами образования циклического АМФ.

Инсулин и ПГЕ могут действовать независимо друг от друга при их антилиполитическом воздействии на липоциты. Например, инсулин, но не ПГЕ, угнетает стимуляцию липолиза экзогенным циклическим АМФ в изолированных липоцитах, но оба эти вещества подавляют стимулированное гормоном образование циклического АМФ. Это позволяет предположить, что место действия инсулина находится дистальнее места стимуляции аденилатциклазы. В организме некоторых животных ПГЕ угнетает глюкагон-индуцированный липолиз, в то время как инсулин не оказывает влияния на этот процесс.

Баланс натрия и воды. Ренин-ангиотензин-альдостероновая система служит основным регулятором гомеостаза натрия, а контроль за водным балансом осуществляется главным образом вазопрессином. Метаболиты арахидоновой кислоты влияют на обе эти системы. ПГЕ2 и ПГI2 стимулируют секрецию ренина, а ингибиторы синтеза простагландинов оказывают противоположное действие. ПГЕ2 и ПГI2 уменьшают сопротивление почечных сосудов и увеличивают почечный кровоток; это приводит к перераспределению кровотока от наружного слоя коры почек к юкстамедуллярной области почек. Ингибиторы синтеза простагландина, такие как индометацин и меклофенамат (meclofenamate), напротив, уменьшают общий почечный кровоток и шунтируют оставшуюся его часть к наружному слою коры почек, что может привести к острому спазму сосудов почек и острой почечной недостаточности, особенно при уменьшении объема циркулирующей крови и отечных состояниях. ПГЕг является натрийуретиком, тогда как ингибиторы циклооксигеназы вызывают задержку натрия и воды в организме.

Индометацин также увеличивает чувствительность к экзогенному вазопрессину, например, у собак. И наоборот, ПГЕ2 уменьшает стимулированный вазопресеином транспорт воды. Поскольку такое действие ПГЕ2 нарушается введением дибутирилциклического АМФ, то наиболее вероятно, что ПГЕ2 будет препятствовать стимуляции аденилатциклазы вазопрессином.

Агрегация тромбоцитов. Тромбоциты обладают способностью синтезировать ПГЕ2, ПГD2 и ТКА2. Физиологическое значение ПГЕ2 и ПГD2 в функции тромбоцитов не установлено, ТКА2 является сильным стимулятором агрегации тромбоцитов; в противоположность этому ПГI2, образуемый в эндотелиоцитах стенок кровеносных сосудов, напротив, играет роль сильного антагониста агрегации тромбоцитов. ТКА2 и ПГI2 могут оказывать свои разнонаправленные воздействия, соответственно уменьшая и увеличивая образование циклического АМФ в тромбоцитах.

Противодействуют агрегации тромбоцитов ингибиторы синтеза эндогенных простагландинов. Например, единичная доза ацетилсалициловой кислоты может подавить нормальную агрегацию тромбоцитов на 48 ч и более, предположительно путем угнетения опосредуемого циклооксигеназой синтеза ТКА2. Длительность фазы угнетения циклооксигеназы единичной дозой этого препарата в тромбоцитах продолжительнее, чем в других тканях, поскольку тромбоцит в отличие от ядросодержащих клеток, способных синтезировать новые белки, не обладает соответствующими структурами для образования нового фермента. Следовательно, действие ацетилсалициловой кислоты продолжается до тех пор, пока не будут выделены в кровь вновь образованные тромбоциты. С другой стороны, эндотелиоциты быстро восстанавливают активность циклооксигеназы после прекращения лечения и, таким образом, восстанавливается продукция ПГI2. В этом заключается одна из причин того, что организм больных, принимающих ацетилсалициловую кислоту, не предрасположен к чрезмерному тромбообразованию. Кроме того, тромбоцит более чувствителен к препарату, чем эндотелиоцит.

Повреждение эндотелия может привести к агрегации тромбоцитов вдоль стенки кровеносного сосуда, вызывая местное уменьшение синтеза ПГI2 и тем самым открывая возможность избыточной агрегации тромбоцитов в месте повреждения сосудистой стенки.

Действие на сосуды. Вазоактивные свойства метаболитов арахидоновой кислоты относятся к числу самых замечательных эффектов этих веществ. ПГЕ2 и ПГI2 являются вазодилататорами, а ПГF2?, ТКА2 и ЛТС4, ЛТD4, ЛТE4 - вазоконстрикторами в большинстве участков сосудистого русла. Эти свойства, по-видимому, представляют собой результат их прямого действия на гладкую мускулатуру сосудистой стенки. Если системное артериальное давление поддерживается в пределах физиологической нормы, то действие расширяющих сосуды метаболитов арахидоновой кислоты приводит к увеличению кровотока. Однако в случае понижения артериального давления кровоток будет уменьшаться, поскольку при системной гипотензии индуцированное катехоламинами сужение сосудов скомпенсирует сосудорасширяющее действие простагландинов. Таким образом, при оценке влияния метаболитов арахидоновой кислоты на кровоток в сосудистом русле того или иного органа необходимо исключить существенные изменения системного артериального давления.

Влияние на пищеварительный тракт. Простагландины серии Е оказывают влияние также на пищеварение. Введение любого из простагландинов ППг или ПГЕг в желудочную артерию собак вызывет увеличение кровотока и угнетение выделения кислоты, а при пероральном приеме некоторые аналоги ПГЕ одновременно угнетают выделение кислоты и оказывают прямое защитное действие на слизистую оболочку пищеварительного тракта. В экспериментах in vitro Простагландины стимулируют гладкую мускулатуру пищеварительного тракта и тем самым повышают его двигательную активность, но не совсем ясно, имеют ли эти эффекты физиологическое значение.

Нейропередача. ПГЕ угнетает выход норадреналина из симпатических нервных окончаний. Действие ПГЕ на секрецию этого нейромедиатора, по-видимому, осуществляется на пресинаптическом уровне, т. е. в участке нервного окончания, расположенном проксимальнее синаптической щели; оно может быть обратимо при увеличении концентрации кальция в перфузионной среде. Поэтому ПГЕг способен подавлять высвобождение норадреналина путем блокирования поступления кальция внутрь клетки. Ингибиторы синтеза ПГЕг усиливают высвобождение норадреналина в ответ на стимуляцию адренергических нервов.

Катехоламины обладают способностью высвобождать ПГЕг из различных тканей, и происходит это, вероятно, посредством адренергически-опосредованного механизма. Например, в иннервированных тканях, таких как ткани селезенки, нервная стимуляция или инъекция норадреналина вызывает высвобождение ПГЕг. Это высвобождение блокируется после денервации или введения а-адрено-блокирующих средств. Таким образом, активирующий нерв стимул вызывает освобождение норадреналина, который в свою очередь стимулирует синтез и высвобождение ПГЕг; затем ПГЕг посредством обратной связи действует на пресинаптическом уровне на нервное окончание, уменьшая количество высвобождаемого норадреналина.

Эндокринная функция поджелудочной железы. ПГЕг оказывает как стимулирующее, так и угнетающее влияние на секрецию инсулина??клетками поджелудочной железы in vitro. In vivo ПГЕ2 подавляет реакцию инсулина на внутривенное введение глюкозы. Это подавление, по-видимому, является специфичным по отношению к глюкозе, потому что реакция инсулина на другие средства, усиливающие секрецию, под действием ПГЕ2 не изменяется. Предположение о том, что эндогенный ПГЕ2 in vivo угнетает секрецию инсулина, подтверждается исследованиями ингибиторов синтеза простагландина. Обычно такие лекарственные средства усиливают секрецию инсулина и увеличивают толерантность к углеводам. Исключением является индометацин, который подавляет вызываемую глюкозой секрецию инсулина и может вызвать развитие гипергликемии. Такие противоречивые результаты исследований индометацина, вероятно, обусловлены каким-то иным действием, помимо угнетения циклооксигеназы. Липооксигеназный путь, по-видимому, играет роль в усилении секреции инсулина, участвуя в процессе стимул-секреции. В этом случае вероятным активным продуктом арахидоновой кислоты может быть 12-ГПЭТЕ.

Лютеолиз. Экстирпация матки во время лютеальной фазы яичникового цикла у овец приводит к сохранению желтого тела. Это позволяет предположить, что маткой в норме вырабатывается лютеолитическое вещество. Можно предположить, что этим веществом является ПГЕ2, поскольку он может вызывать регрессию желтого тела.

Патофизиология метаболитов арахидоновой кислоты. В большинстве случаев развитие какого-либо заболевания сопровождается чрезмерно высоким уровнем продуцирования метаболитов арахидоновой кислоты, но некоторые нарушения могут быть связаны и со сниженным их продуцированном. Последнее может произойти в результате: недостатка употребления арахидоновой кислоты (незаменимой жирной кислоты с пищей); повреждения ткани, необходимой для синтеза простагландинов, или вследствие лечения лекарственными средствами, угнетающими ферменты в цепи синтеза.

Резорбция костей: гиперкальциемия, обусловленная злокачественным заболеванием (см. также гл. 303 и 336). Гиперкальциемия развивается при различных злокачественных заболеваниях паращитовидных желез. В ряду случаев причиной может служить избыток гормона паращитовидных желез в результате или автономного продуцирования его тканью паращитовидных желез, или эктопического образования самой опухолью. Однако у большинства больных, страдающих гиперкальциемией, обусловленной злокачественным заболеванием, не отмечается повышенного уровня содержания гормона паращитовидных желез в плазме крови, так что этиология этой гиперкальциемии находится в сфере повышенного интереса.

Простагландин Е2 является мощным пусковым механизмом резорбции костей и высвобождения из них кальция. У животных, страдающих гиперкальциемией, которым были трансплантированы опухоли, отмечается повышенное продуцирование ПГЕ2. Лечение этих животных ингибиторами синтеза ПГЕ2 приводит к снижению концентрации этого простагландина и одновременному снижению уровня гиперкальциемии. Подобно этому, у некоторых больных, страдающих гиперкальциемией и злокачественными опухолями, определяется большое количество метаболитов ПГЕ2 в моче, в то время как у больных с нормальной концентрацией кальция в крови и страдающих аналогичными злокачественными опухолями, такого повышения уровня содержания метаболитов ПГЕ2 в моче не отмечается. Лекарственные средства, подавляющие синтез простагландинов. снижают концентрацию кальция в крови у некоторых больных, страдающих гиперкальциемией, обусловленной злокачественным заболеванием. Таким образом, приблизительно у 5-10% больных с гиперкальциемией и злокачественными опухолями отмечают повышенный уровень продуцирования ПГЕ, и им может быть показана терапия лекарственными средствами, угнетающими синтез простагландинов.

Источник избыточного количества ПГЕ2 в крови у таких больных не выявлен. Следовало бы ожидать компенсации этого избытка путем повышенного уровня расщепления ПГЕ в печени и легких. Однако возможно, что опухолью высвобождаются в циркулирующую кровь настолько большие количества ПГЕ2, что расщепление его в печени и легких оказывается недостаточным, чтобы скомпенсировать такую нагрузку. При наличии метастазов в легких венозный отток от этих опухолей может вливаться в большой круг кровообращения, минуя легочную ткань. Другим возможным механизмом является метастатическое поражение костей. Опухолевые клетки в культуре синтезируют ПГЕ, метастатические опухолевые клетки в кости также могут синтезировать этот простагландин, который будет действовать локально, вызывая резорбцию кости. Гиперкальциемия, обусловленная злокачественным заболеванием, может развиться и при отсутствии видимых костных метастазов, хотя следует отметить, что существующие в настоящее время клинические методы визуализации подобных метастазов, такие как радиоизотопное сканирование, могут оказаться недостаточно чувствительными для выявления многих очагов поражения с небольшими размерами.

Резорбция кости: ревматоидный артрит и зубная киста (см. гл. 263). Было установлено, что избыточное продуцирование ПГЕ2 служит причиной юкстаартикулярного остеопороза и эрозий костей у некоторых больных, страдающих ревматоидным артритом. Пораженные ревматизмом синовиальные оболочки синтезируют ПГЕ2 в культуре тканей, культуральная среда которых способна вызывать резорбцию кости; добавление же индометацина в среду для культивирования таких клеток блокирует эту способность к резорбции. Поскольку индометацин не предотвращает резорбцию костей, обусловленную ранее образовавшимся ПГЕ2, предполагают, что за эту резорбционную активность ответствен ПГЕ2, вырабатываемый в синовиальных оболочках.

Клетки доброкачественных зубных кист также вызывают резорбцию кости и синтезируют ПГЕ2 в культуре тканей. И в этом случае резорбцию, вызванную средой из этих культур, можно уменьшить добавлением в нее индометацина перед инкубацией. Сходной проблемой является резорбция костной ткани зубных альвеол у больных, страдающих пародонтозом, распространенным воспалительным, заболеванием десен. Уровни содержания ПГЕ2 в десне при воспалении выше, чем в здоровых тканях. Таким образом, вероятно, что резорбция костных тканей зубных альвеол может быть обусловлена, по меньшей мере отчасти, локальным избыточным продуцированном этих метаболитов.

Синдром Бартера (см. гл. 228). Синдром Бартера характеризуется повышенными уровнями содержания ренина, альдостерона и брадикинина в плазме крови; резистентностью к прессорному действию ангиотензина; гипокалиемическим алкалозом и опустошением запасов калия в почках при наличии нормального артериального давления. Основанием для постулированной роли простагландинов при этом заболевании является то, что ПГЕ2 и ПГI2 стимулируют высвобождение ренина и прессорная реакция на введенный ангиотензин притупляется сосудорасширяющими эффектами этих простагландинов. Увеличение высвобождения ренина ведет к повышенной секреции альдостероца, которая в свою очередь может увеличить активность калликреина в моче.

В соответствие с этим в моче страдающих синдромом Бартера больных отмечают повышенные уровни содержания ПГЕ2 и б-кето-ПГF1?. У таких больных была выявлена также и гиперплазия интерстициальных клеток мозгового вещества почек (которые синтезируют ПГЕ в культуре). Выявление этих фактов привело к попыткам лечения этого заболевания ингибиторами синтеза простагландинов. Индометацин (и другие ингибиторы) устраняет фактически все нарушения, за исключением гипокалиемии. Таким образом, простагландин (вероятно, ПГЕ2 и/или ПГI2), возможно, опосредует некоторые проявления синдрома Бартера.

Сахарный диабет (см. гл. 327). Внутривенное введение больших количеств глюкозы здоровым людям вызывает резкое (первая фаза) увеличение секреции инсулина в плазму крови, за которым следует более медленная и более длительная реакция (вторая фаза секреции инсулина). У больных, страдающих сахарным диабетом типа II (инсулиннезависимый, развитие которого начинается в зрелом возрасте), отсутствует первая фаза высвобождения инсулина в ответ на введение глюкозы и отмечается непостоянная степень снижения секреции инсулина во второй фазе. Реакция инсулина на другие вещества, стимулирующие секрецию, такие как аргинин, изарин, глюкагон и секретин, сохраняется. Таким образом, у больных диабетом, по-видимому, имеется специфический дефект, препятствующий нормальному восприятию сигналов от глюкозы. Поскольку ПГЕ угнетает индуцированную глюкозой секрецию инсулина у здоровых людей, то больным сахарным диабетом типа II назначали ингибиторы синтеза эндогенного простагландина с целью определить, происходит ли при этом восстановление секреции инсулина. Как натрия салицилат, так и ацетилсалициловая кислота повышают базальные уровни содержания инсулина в плазме крови и частично восстанавливают первую фазу реакции инсулина на глюкозу; увеличивается секреция инсулина и во второй фазе, повышается толерантность к глюкозе.

Незаращение артериального протока (см. гл. 185). В экспериментах на животных установлено, что артериальный проток у овец чувствителен к сосудорасширяющим свойствам ПГЕ2, а в тканях стенки протока присутствуют ПГЕ-подобные вещества. Таким образом, сохранять артериальный проток незаращенным в пренатальном периоде может повышенная концентрация эндогенного ПГЕ2. Поскольку ингибиторы синтеза простагландина вызывают сужение артериального протока у плодов овец, были предприняты попытки введения индометацина недоношенным детям с изолированным незаращенным артериальным протоком. После нескольких суток такого лечения последовало закрытие просвета протока у большинства детей, хотя некоторым из них для этого потребовался второй курс лечения, а у небольшого числа детей сохранилась необходимость выполнить хирургическую перевязку артериального протока. Наиболее вероятно получение благоприятного результата лечения индометацином у детей, срок внутриутробного развития которых не превышает 35 недель.

Больным с врожденными пороками сердца определенных типов для выживания необходимо наличие незаращенного артериального протока. Это является жизненно важным в таких случаях, когда артериальный проток является основным каналом, по которому неоксигенированная кровь из дуги аорты достигает легких, например, при атрезии легочной артерии и атрезии.правого предсердно-желудочкового клапана. Поскольку ПГЕ расслабляет гладкую мускулатуру в артериальном протоке ягнят, были сделаны клинические попытки внутривенного введения ПГЕ с целью поддержания артериального протока у таких больных в незаращенном состоянии в качестве альтернативы немедленному хирургическому вмешательству. Подобное введение ПГЕ вызывает кратковременное увеличение притока крови к легким и повышение насыщения артериальной крови кислородом, до тех пор пока не появится возможность выполнения необходимой корригирующей операции на сердце. Наличие значительного объема праволевого шунтирования при таких пороках сердца позволяет избежать расщепления внутривенно введенного ПГЕ2 в легких, прежде чем он попадет в артериальный проток. В этом случае характер заболевания сам по себе облегчает доставку лекарственного средства к месту его действия.

Язвенная болезнь желудка (см. гл. 235). Повышенная секреция кислоты в желудке у людей, страдающих язвенной болезнью, вносит свой вклад в повреждение слизистой оболочки органа. Существуют различные аналоги ПГЕ2, которые угнетают секрецию соляной кислоты в желудке и являются по своей природе также и цитопротекторами. Эти вещества более эффективны, чем плацебо, для устранения болей и снижения секреции кислоты в желудке у страдающих язвенной болезнью людей. Кроме того, сообщалось об ускорении заживления язв, оцениваемом эндоскопически, у больных, получавших аналоги ПГЕ, по сравнению с больцыми, получавшими плацебо.

Дисменорея (см. гл. 331). Как правило, дисменорея связана с усилением сократимости матки. Тот факт, что некоторые анальгетики, используемые для лечения этого заболевания, также угнетают синтез простагландина, позволяет предположить, что в патогенезе дисменореи определенную роль могут играть метаболиты арахидоновой кислоты. Простагландины серий Е и F присутствуют в эндометрии у женщин. Внутривенное введение любого из них вызывает сокращение матки, а уровни содержания ПГF и ПГЕ в менструальной крови снижаются после введения ингибиторов синтеза простагландина. Результаты контролируемых исследований по сравнению эффективности ингибиторов синтеза простагландина и плацебо у страдающих дисменореей женщин показывают более выраженное симптоматическое улучшение после лекарственной терапии.

Астма (см. гл. 202).

Воспалительная реакция и иммунный ответ (см. гл. 62 и 260). Такие лекарственные средства, как, например, ацетилсалициловая кислота, обладают жаропонижающим, противовоспалительным и аналгезирующим действием. Существует несколько доводов в пользу наличия связи между воспалением и метаболитами арахидоновой кислоты: 1 - воспалительные стимулы, такие как гистамин и брадикинин, одновременно с индуцированном воспаления вызывают и высвобождение эндогенных простагландинов; 2 - лейкотриены C4-D4-E4 обладают более сильным, чем гистамин, бронхоспастическим действием; 3 - некоторые метаболиты арахидоновой кислоты вызывают расширение сосудов и гипералгезию; 4 - в очагах воспаления выявляют присутствие ПГЕ2 и ЛТВ4; полиморфно-ядерные клетки высвобождают эти вещества во время фагоцитоза, а они в свою очередь вызывают хемотаксис лейкоцитов; 5 - некоторые простагландины вызывают увеличение сосудистой проницаемости, являющейся характерной чертой воспалительной реакции, приводящей к местному отеку; 6 - индуцированное ПГЕ расширение сосудов не устраняется атропином, анаприлином, метисергидом (Methysergide) или антигистаминными средствами, являющимися известными антагонистами других возможных медиаторов воспалительной реакции; таким образом, ПГЕ может оказывать прямое воспалительное действие, а некоторые медиаторы воспаления могут функционировать, оказывая влияние на высвобождение ПГЕ; 7 - некоторые метаболиты арахидоновой кислоты могут вызвать боль у экспериментальных животных и гипералгезию, или повышенную болевую чувствительность у человека; 8-ПГЕ может привести к развитию лихорадки после его введения в желудочки головного мозга или в гипоталамус экспериментальных животных; 9 - пирогенные вещества вызывают повышение концентрации простагландинов в цереброспинальной жидкости, в то время как ингибиторы синтеза простагландина уменьшают интенсивность лихорадки и снижают высвобождение простагландинов в цереброспинальную жидкость.

Метаболиты арахидоновой кислоты также играют определенную роль в иммунном ответе. Небольшие количества ПГЕ2 могут подавлять стимуляцию лимфоцитов у человека, вызываемую такими митогенными веществами, как фитогемагглютинин, а воспалительная реакция бывает связана с локальным высвобождением метаболитов арахидоновой кислоты; таким образом, эти вещества могут действовать как негативные модуляторы функции лимфоцитов. Высвобождение ПГЕ митогенстимулированными лимфоцитами может представлять собой часть контрольного механизма обратной связи, посредством которого реализуется активность лимфоцитов. Чувствительность лимфоцитов к угнетающему действию ПГЕ2 у человека повышается с возрастом, а индометацин увеличивает чувствительность лимфоцитов к действию митогенов в большей степени у пожилых людей. Культура лимфоцитов, взятых у страдающих лимфогранулематозом больных, высвобождает больше ПГЕ2 после добавления фитогемагглютинина, а чувствительность лимфоцитов увеличивается под действием индометацина. Если удалить супрессорные Т-лимфоциты из соответствующих культур, то количество синтезируемого ПГЕ2 уменьшается, а чувствительность лимфоцитов, взятых у больных, лимфогранулематозом и у здоровых людей, становится одинаковой. Подавление клеточного иммунитета у страдающих лимфогранулематозом больных может быть результатом угнетения простагландином Е функции лимфоцитов.

Ненасыщенная жирная кислота, высвобождаемая фосфолипазой А2 из мембранных фосфолипидов, превращается в активные производные в ходе липоксигеназного, циклоксигеназного и простагландинсинтетазного ферментативных процессов.
Любой из перечисленных путей продукции активных метаболитов арахидоновой кислоты зависит от адекватного поступления ненасыщенного жирокислотного предшественника из мембранных фосфолипидов.

В настоящее время известно, что многие формы опосредованной рецепторами активации клеток сопровождаются повышением активности связанных с мембранами фосфолипаз, которые катализируют гидролиз эфирных связей в глицерофосфолипидах. Наиболее важна в этом отношении фосфолипаза А2, отщепляющая жирные кислоты во 2м положении диацилглицерофосфолипидов, которая образует лизофосфолипид и ненасыщенную жирную кислоту, обычно арахидонат.

Деацилированный фосфолипид быстро реацилируется за счет переноса активированной СоА жирной кислоты, что легко можно измерить по включению меченой арахидоновой кислоты в фосфолипиды клеток. Этот кругооборот глицерофосфолипида служит источником арахидоновой кислоты для метаболизма по цикло и липооксигеназному путям и может влиять на проницаемость мембраны и активность других связанных с мембраной ферментов.

Активация фосфолипазы А2 зависит от кальция; она происходит при стимуляции клеток надпочечников АКТГ, что приводит к ускорению кругооборота арахидонилфосфатидилинозитола. Этот эффект вызывается также кальциевым ионофором А23187 и может отражать повышение внутриклеточного уровня кальция при действии АКТГ и вторичной стимуляцией фосфолипазы А2 в качестве ранней реакции, сопутствующей АКТГрецепторному взаимодействию. Известно, что действие АКТГ на стероидогенез в надпочечниках зависит от кальция, а не только от образования цАМФ. По крайней мере, часть потребностей в кальции для действия АКТГ может быть связана с опосредуемым фосфолипазой A2 кругооборотом мембранных фосфолипидов при активации коры надпочечников.

Кругооборот фосфоглицеридов в плазматической мембране с эффектами опосредованного рецепторами (Р) потока кальция на фосфолипазу А2 и продукцию арахидоновой кислоты.

Хотя механизм, включающий активацию фосфолипазы, может отражать общее свойство гормонрегулируемых секреторных клеток, при гормональной стимуляции специфических клетокмишеней меняются и другие этапы метаболизма фосфолипидов. Так, в клетках гранулемы яичника, где ЛГ увеличивает продукцию простагландинов, гормон не повышает образование арахидоновой кислоты, а действует на более поздних этапах, увеличивая активность простагландинсинтетазы. Этот эффект Л Г на синтез простагландинов в граафовом фолликуле (пузырчатый яичниковый фолликул), по-видимому, не опосредует стероидогенного действия гонадотропина, но играет важную роль в развитии овуляции.

«Эндокринология и метаболизм», Ф.Фелиг, Д.Бакстер

Эстрадиолрецепторный комплекс можно экстрагировать из ядер матки в комбинации с рибонуклеопротеидом, а активированные стероидрецепторные комплексы прочно связаны с ядерными гистонами и основными негистоновыми белками ядра. Таким образом, как ядерные белки, так и ДНК, по-видимому, принимают участие в процессе связывания хроматином, который протекает, очевидно, как в нуклеосомах, так и в промежуточных участках хроматина, доступных для нуклеазного…

После этапа активации, обусловливаемого взаимодействием стероидных гормонов с их специфическими внутриклеточными рецепторными белками, гормонрецепторные комплексы приобретают способность быстро связываться с хроматином и влиять на транскрипцию специфических молекул мРНК. Отдельные белки, синтез которых, как было установлено, индуцируется действием стероидных гормонов на образование яРНК. По всей вероятности, будет показано, что многие другие белки, о которых известно, что…

После регресса первичной реакции на эстроген повторное воздействие эстрогеном или прогестероном вызывает в яйцеводе быстрое увеличение продукции мРНК, контролирующих синтез специфических «экспортируемых» белков, в том числе овальбумина и кональбумина. Скорость синтеза овальбуминовой мРНК, регистрируемая либо путем трансляции in vitro, либо с помощью гибридизации с комплементарной ДНК (кДНК), после введения эстрогена быстро увеличивается и тесно коррелирует…

Гормонрецепторные комплексы оказывают прямое воздействие на активность РНКполимеразы в изолированных ядрах, а также на матричную функцию хроматина клетокмишеней. Эстрогены и андрогены стимулируют активность ядрышковой [I] и нуклеоплазменной РНКполимераз в соответствующих клеткахмишенях (матке и предстательной железе), а прогестеронрецепторные комплексы повышают матричную активность хроматина из яйцеводов цыплят, но не из тканей, не являющихся мишенями для прогестерона….

Известно, что между транскрипцией РНК на матрице ДНК и появлением транслируемой мРНК в цитоплазме существует несколько стадий. До недавнего времени полагали, что транскрипция приводит к образованию высокомолекулярной РНК, процессинг которой сводится к простому нарезанию специфических молекул мРНК, которые затем и проходят в цитоплазму, где транслируются с образованием соответствующих белков. Однако в настоящее время выяснилось, что…