Методы биологических исследований. Методы изучения биологии Возможности и ограниченность разнообразных методов биологических исследований

24.04.2024

Когда мы говорим о биологии, мы говорим о науке, которая занимается исследованием всего живого. Все живые существа, включая ареал их обитания, изучаются. Начиная от строения клеток и заканчивая сложными биологическими процессами, все это является предметом биологии. Рассмотрим методы исследования в биологии , которые на данный момент используются.

Методы биологических исследований включают в себя:

  • · Эмпирические/экспериментальные методы
  • · Описательные методы
  • · Сравнительные методы
  • · Статистические методы
  • · Моделирование
  • · Исторические методы

Эмпирические методы заключаются в том, что объект опыта подвергается изменению условий его существования, а потом, учитываются полученные результаты. Эксперименты бывают двух видов в зависимости от их места проведения: лабораторные эксперименты и полевые эксперименты. Для проведения полевых экспериментов используются естественные условия, а для проведения лабораторных экспериментов, используется специальное лабораторное оборудование.

Описательные методы основываются на наблюдение, с последующим анализом и описанием феномена. Этот метод позволяет выделить особенности биологических явлений и систем. Это один из самых древних методов.

Сравнительные методы подразумевают сравнение полученных фактов и явлений с другими фактами и явлениями. Сведения получаются путем наблюдения. В последнее время стало популярно применять мониторинг. Мониторинг это постоянное наблюдение, которое позволяет собрать данные, на основе которых будет проводиться анализ, а потом прогнозирование.

Статистические методы также известны под названием математические методы, и используются для того, чтобы обработать данные числового характера, которые были получены в ходе эксперимента. Кроме этого, данный метод применяется для того, чтобы убедиться в достоверности определенных данных.

Исторические методы основываются на изучение предыдущих фактов, и позволяют определить существующие закономерности. Но так как не всегда один метод оказывается достаточно эффективным, принято эти методы совмещать для получения лучших результатов.

Моделирование это метод, который в последнее время принимает большие обороты и подразумевает работать с объектами путем представления их в моделях. То, что нельзя анализировать и изучать впоследствии эксперимента, то можно узнать путем моделирования. Частично используется не только обычное моделирование, а также математическое моделирование.

Рассмотрим аналогию и моделирование в биологических исследованиях.

Аналогия и моделирование в биологии

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключением по аналогии. Ход такого умозаключения можно представить следующим образом. Пусть имеется, например, два объекта А и В. Известно, что объекту А присущи свойства P1 Р 2,..., Рn, Рn+1. Изучение объекта В показало, что ему присущи свойства Р 1 Р 2,..., Рn, совпадающие соответственно со свойствами объекта А. На основании сходства ряда свойств (Р 1 Р 2,..., Рn) у обоих объектов может быть сделано предположение о наличии свойства Рn+1 у объекта В.

Степень вероятности получения правильного умозаключения по аналогии будет тем выше: 1) чем больше известно общих свойств у сравниваемых объектов; 2) чем существеннее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Указанные соображения об умозаключении по аналогии можно дополнить также и следующими правилами:

1) общие свойства должны быть любыми свойствами сравниваемых объектов, т. е. подбираться "без предубеждения" против свойств какого-либо типа; 2) свойство Рn+1 должно быть того же типа, что и общие свойства Р 1 Р 2,..., Рn; 3) общие свойства Р 1 Р 2, ..., Рn должны быть возможно более специфичными для сравниваемых объектов, т. е. принадлежать возможно меньшему кругу объектов; 4) свойство Рn+1, наоборот, должно быть наименее специфичным, т. е. принадлежать возможно большему кругу объектов.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда - прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

"Под моделированием понимается изучение моделируемого объекта (оригинала), базирующееся на взаимооднозначном соответствии определенной части свойств оригинала и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект - оригинал"

Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические). Биологические модели воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей - искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической модели применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Физико-химические модели воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Так, немецкий учёный М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО 4 в водном растворе К 4: французский физик С. Ледюк (1907), погружая в насыщенный раствор К 3РО 4 сплавленный СаСl2, получил - благодаря действию сил поверхностного натяжения и осмоса - структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая модель воспроизводила даже амебовидное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским учёным К. Маттеуччи и немецким - Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок "нерва" электрического "раздражения". Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на модели, распространяющейся по нерву волны возбуждения, воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, "всё или ничего" закон, двустороннее проведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе. Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса, процессы центрального торможения и пр.).

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток.

Модели биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, - дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

Математические модель (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической модели и дают материал для её дальнейшей корректировки. Математическая модель в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, модель сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической модели физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков - синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.

Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом. В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента, то они будут в основном следующими: (19 с 15)

  • - эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);
  • - вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);
  • - некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;
  • - большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально - этическим соображениям.

Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов (19, 20,21), в целом ряде преимуществ:

  • 1. С помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования;
  • 2. В процессе построения модели можно сделать различные дополнения к исследуемой гипотезе и получить ее упрощение;
  • 3. В случае сложных математических моделей можно применять ЭВМ;
  • 4. Открывается возможность проведения модельных экспериментов (синтез аминокислот по Миллеру) (19 с 152).

Все это ясно показывает, что моделирование выполняет в биологии самостоятельные функции и становится все более необходимой ступенью в процессе создания теории. Однако моделирование сохраняет свое эвристическое значение только тогда, когда учитываются границы применения всякой модели.

Этапы проведения биологического исследования

Описание

1. Постановка проблемы

Выработка четкой постановки проблемы.

2. Предполагаемое решение, формулирование гипотезы

Формулирование ожидаемых результатов и их научного значения с опорой на уже известные данные

3. Планирование исследования

Разработка порядка проведения исследования: разработка последовательности осуществления отдельных этапов исследования

4. Проведение исследования

Подбор необходимых биологических объектов, приборов, реактивов. Проведение различных этапов исследования. Сбор и запись наблюдений, измеряемых величин и результатов

5. Подведение итогов

Сравнение полученных результатов с гипотезой, научное объяснение результатов, формулирование выводов

В настоящее время в различных отраслях биологической науки широко используют метод моделирования (фр. modele - "образец", "прообраз"), когда на специально созданной модели воспроизводят характеристики изучаемого объекта. При этом между моделью и объектом, интересующим исследователя, должно быть известное подобие. Моделирование широко используется, если объект исследования очень сложный (многокомпонентный) или труднодоступный для непосредственного наблюдения. В этих случаях моделирование помогает не только выявить свойства и взаимозависимости изучаемого объекта, но и представить его характеристики в изменяющихся условиях.

Методы биологии. Биология использует самые различные методы исследования. К традици-онным, но сохранившим свое значение относится описательный метод. Основные методы биологии:
· Наблюдение и описание фактов и явлений (описательный метод) . Метод наблюдения дает возможность анализировать и описывать биологические явления. На методе наблюдения основыва-ется описательный метод. Для того, чтобы выяснить сущность явления, необходимо прежде всего собрать и описать фактический материал. Например, с помощью метода наблюдения можно изучить сезонные изменения в живой природе. Наблюдение - изучение объектов живой природы в естест-венных условиях существования. Это непосредственное наблюдение за поведением, расселением, размножением растение и животных в природе. Для этих целей используются как традиционные средства полевых исследований (бинокль, видеокамеры) , так и сложное лабораторное оборудование (микроскопы, биохимические анализаторы, разнообразная измерительная техника) .
· Сравнение , дающее возможность установить сходство и различие между разными биологиче-скими структурами и явлениями (сравнительный метод) . Сопоставляют анатомическое строение, химический состав, структуру генов и другие признаки у организмов разного уровня сложности. При этом исследуются не только ныне живущие организмы, но и давно вымершие, сохранившиеся в виде окаменелых останков в палеонтологической летописи.
·Эксперимент (лат. experimentum – испытание) , в ходе которого биологические объекты и про-цессы изучаются в искусственно созданных, точно контролируемых условиях (экспериментальный метод) . Экспериментальный метод связан с целенаправленным созданием системы, помогает ис-следовать свойства и явления живой природы. Экспериментальный метод (опыт) - исследования жи-вых объектов в условиях экстремального действия факторов среды – измененной температуры, ос-вещенности или влажности, повышенной нагрузки, токсичности или радиоактивности, измененного режима или места развития (удаление или пересадка генов, клеток, органов и т. п.) . Эксперименталь-ный метод позволяет выявить скрытые свойства, пределы адаптивных (приспособительных) воз-можностей живых систем, степень их гибкости, надежности, изменчивости.
·Широко используются инструментальные методы : электрография, радиолокация и др.

·Моделирование – построение и изучение моделей (схем, графиков, описаний) процессов и явлений, которое стало все шире применяться с развитием компьютерных технологий. С помощью метода моделирования изучается какое-либо явление через его модель.
·Универсальное значение для всех отраслей биологии имеет исторический метод – изучение всех явлений и процессов, как этапов эволюционного развития природы. Исторический метод выяв-ляет эволюционные преобразования биологических видов и их сообществ. Это один из важнейших методов, служащий основой осмысления получаемых фактов. Исторический метод выясняет зако-номерности появления и развития организмов, становления их структуры и функций.
·Палеонтологический метод – изучение вымерших организмов.
·Системный метод относится к категории новых междисциплинарных методов исследования. Живые объекты рассматриваются как системы, то есть совокупности элементов с определенными отношениями.

·Биохимический метод позволяет выделять и изучать вещества, входящие в состав организ-мов, их превращения, позволяет выявлять наследственные нарушения обмена веществ.
Частные (специальные) методы цитологии используют для изучения строения и функций клеток и тканей:
·Световая микроскопия - позволяет обнаружить ядро и некоторые органоиды клетки – мито-хондрии, хлоропласты, аппарат Гольджи, реснички и жгутики.
·Электронная микроскопия – позволяет изучать тонкое строение органоидов (например,
хлоропластов) , их ультраструктуру,
·Центрифугирование - позволяет избирательно выделять и изучать органоиды клетки;
·Метод культуры клеток и тканей используют для изучения строения и функций клеток.

Эксперимент - метод исследования в биологии, при котором экспериментатор сознательно изменяет условия и наблюдает, как они влияют на живые организмы. Эксперимент можно проводить как в лаборатории, так и на открытом воздухе.

В практической микробиологии используют для диагностики инфекционных болезней, выделения и идентификации чистой к-ры возбудителя, индикации и идентификации экзотоксинов. Кроме того, его широко применяют в экспериментальной микробиологии и иммунологии, а также для контроля иммунопрепаратов.

Экспериментальный метод обладает высокой чувствительностью. В случаях выделения чистой к-ры и установления иммунолических сдвигов у животного экспериментальный метод высоко специфичен и может быть использован на ранних этапах болезни. Недостатками экспериментального метода являются трудоемкость, дороговизна, продолжительность исследования, опасность лабораторного заражения. Поэтому его используют в тех случаях, если другие методы неэффективны и если имеются необходимые условия для содержания лабораторных животных.

Применение экспериментального метода в биологии связывают с именем Уильяма Гарвея, который использовал его в своих исследованиях при изучении кровообращения. Но широко применяться в биологии он начал лишь с начала XIX в., прежде всего при изучении физиологических процессов. Экспериментальный метод позволяет изучать то или иное явление жизни с помощью опыта. Большой вклад в утверждение экспериментального метода в биологии внес Г.Мендель, который, изучая наследственность и изменчивость организмов, впервые использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основании получаемых результатов. Работа Г Менделя стала классическим образцом методологии экспериментальной науки.

В XX в. экспериментальный метод стал ведущим в биологии. Это стало возможным благодаря появлению новых приборов для биологических исследований (электронный микроскоп, томограф и др.) и использованию методов физики и химии в биологии.

В настоящее время в биологическом эксперименте широко используют различные виды микроскопии, включая и электронную с техникой ультратонких срезов, биохимические методы, разнообразные способы культивирования и прижизненного наблюдения культур клеток, тканей и органов, метод меченых атомов, рентгеноструктурный анализ, ультрацентрифугирование, хроматографию и т.д. Не случайно во второй половине XX в. в биологии развилось целое направление - создание новейших приборов и разработка методов исследования.

В биологических исследованиях все шире применяют моделирование, которое считают высшей формой эксперимента. Так, ведутся активные работы по компьютерному моделированию важнейших биологических процессов, основных направлений эволюции, развития экосистем или даже всей биосферы (например, в случае глобальных климатических или техногенных изменений).

Экспериментальный метод в сочетании с системно-структурным подходом коренным образом преобразил биологию, расширил ее познавательные возможности и открыл новые пути для использования биологических знаний во всех сферах человеческой деятельности.

Метод - это путь исследования, который проходит учёный, решая какую-либо научную задачу, проблему.

Научный метод - это совокупность приёмов и операций, используемых при построении системы научных знаний.

Методы, универсальные для всех биологических наук: описательный, сравнительный, исторический и экспериментальный .
  • Описательный метод. В основе его лежит наблюдение. Он широко применялся еще учёными древности, занимавшихся сбором фактического материала и его описанием(изучение и описание животных и растений), а также применяется в настоящее время (например, при открытии новых видов).

Наблюдение - метод, с помощью которого исследователь собирает информацию об объекте (восприятие природных объектов с помощью органов чувств).

Пример:

Наблюдать можно визуально, например, за поведением животных. Можно наблюдать с помощью приборов за изменениями, происходящими в живых объектах: например, при снятии кардиограммы в течение суток, при замерах веса телёнка в течение месяца. Наблюдать можно за сезонными изменениями в природе, за линькой животных и т.д. Выводы, сделанные наблюдателем, проверяются либо повторными наблюдениями, либо экспериментально.

  • Сравнительный метод стал применяться в XVII в. Он позволяет выявлять сходства и различия между организмами и их частями (систематизация растений и животных, разработка клеточной теории). В наше время сравнительный метод также широко применяется в различных биологических науках.
  • Исторический метод - установление взаимосвязей между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени (несколько миллиардов лет). Этот метод помогает осмыслить полученные факты, сопоставить их с ранее известными результатами. Этот метод стал широко применяться во второй половине XIX века (обоснование теории эволюции Ч. Дарвина ). Применение исторического метода позволило превратить биологию из науки описательной в науку, объясняющую как произошли и как функционируют многообразные живые системы.
  • Экспериментальный метод - это получение новых знаний (изучение явления) с помощью поставленного опыта.

Эксперимент - метод исследования в биологии, при котором экспериментатор сознательно изменяет условия и наблюдает, как они влияют на живые организмы. Эксперимент можно проводить как в лаборатории, так и на открытом воздухе.

Экспериментальный метод начал применять в своих исследованиях при изучении кровообращения Уильям Гарвей (1578-1657г.) , а широко использоваться в биологии (при изучении физиологических процессов) он начал с XIX в. Г. Мендель, изучая наследственность и изменчивость организмов, впервые применил эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основании получаемых результатов.
В XX в., благодаря появлению новых приборов для биологических исследований (электронный микроскоп, томограф, и др.), экспериментальный метод стал ведущим в биологии. Моделирование , которое считают высшей формой эксперимента, также применяют в современной биологии (ведутся активные работы по компьютерному моделированию важнейших биологических процессов, основных направлений эволюции, развития экосистем и всей биосферы).

Биология делится на множество частных наук, изучающих различные биологические объекты: биология растений и животных, физиология растений, морфология, генетика, систематика, селекция, микология, гельминтология и множество других наук. Поэтому наряду с общебиологическими методами, выделяют методы, которые используются частными биологическими науками:

  • генетика - генеалогический метод изучения родословных,
  • селекция - метод гибридизации,
  • гистология - метод культуры тканей и т.д.

Научный факт - это форма научного знания, в которой фиксируется некоторое конкретное явление, событие; результат наблюдений и экспериментов, который устанавливает количественные и качественные характеристики объектов.

Текущая страница: 1 (всего у книги 27 страниц) [доступный отрывок для чтения: 18 страниц]

A. А. Каменский, Е. А. Криксунов, B. В. Пасечник
Биология. Общая биология 10–11 классы

Условные обозначения:

– задания, направленные на развитие умений работать с информацией, представленной в разных видах;

– задания, направленные на развитие коммуникативных умений;

– задания, направленные на развитие общих мыслительных умений и навыков, способности самостоятельно планировать пути решения конкретных задач.

Введение

Вы начинаете изучение школьного курса «Общая биология». Это условное название части школьного курса биологии, задача которого – изучение общих свойств живого, законов его существования и развития. Отражая живую природу и человека как её часть, биология приобретает всё большее значение в научно-техническом прогрессе, становясь производительной силой. Биология создаёт новую технологию – биологическую, которая должна стать основой нового индустриального общества. Биологические знания должны способствовать формированию биологического мышления и экологической культуры у каждого члена общества, без чего дальнейшее развитие человеческой цивилизации невозможно.

§ 1. Краткая история развития биологии


1. Что изучает биология?

2. Какие биологические науки вам известны?

3. Каких учёных-биологов вы знаете?


Биология как наука. Вы хорошо знаете, что биология – это наука о жизни. В настоящее время она представляет совокупность наук о живой природе. Биология изучает все проявления жизни: строение, функции, развитие и происхождение живых организмов, их взаимоотношения в природных сообществах со средой обитания и с другими живыми организмами.

С тех пор как человек стал осознавать своё отличие от животного мира, он начал изучать окружающий его мир. Сначала от этого зависела его жизнь. Первобытным людям необходимо было знать, какие живые организмы можно употреблять в пищу, использовать в качестве лекарств, для изготовления одежды и жилищ, а какие из них ядовиты или опасны.

С развитием цивилизации человек смог позволить себе такую роскошь, как занятие наукой в познавательных целях.

Исследования культуры древних народов показали, что они имели обширные знания о растениях, животных и широко их применяли в повседневной жизни.


Чарлз Дарвин (1809–1882)


Современная биология – комплексная наука, для которой характерно взаимопроникновение идей и методов различных биологических дисциплин, а также других наук – прежде всего физики, химии и математики.

Основные направления развития современной биологии. В настоящее время условно можно выделить три направления в биологии.

Во-первых, это классическая биология. Её представляют учёные-натуралисты, изучающие многообразие живой природы. Они объективно наблюдают и анализируют всё, что происходит в живой природе, изучают живые организмы и классифицируют их. Неправильно думать, что в классической биологии все открытия уже сделаны. Во второй половине XX в. не только описано много новых видов, но и открыты крупные таксоны, вплоть до царств (Погонофоры) и даже надцарств (Архебактерии, или Археи). Эти открытия заставили учёных по-новому взглянуть на всю историю развития живой природы. Для настоящих учёных-натуралистов природа – это самоценность. Каждый уголок нашей планеты для них уникален. Именно поэтому они всегда среди тех, кто остро чувствует опасность для окружающей нас природы и активно выступает в её защиту.

Второе направление – это эволюционная биология. В XIX в. автор теории естественного отбора Чарлз Дарвин начинал как обычный натуралист: он коллекционировал, наблюдал, описывал, путешествовал, раскрывая тайны живой природы. Однако основным результатом его работы, сделавшим его известным учёным, стала теория, объясняющая органическое разнообразие.

В настоящее время изучение эволюции живых организмов активно продолжается. Синтез генетики и эволюционной теории привёл к созданию так называемой синтетической теории эволюции. Но и сейчас ещё есть много нерешённых вопросов, ответы на которые ищут учёные-эволюционисты.

Созданная в начале XX в. нашим выдающимся биологом Александром Ивановичем Опариным первая научная теория происхождения жизни была чисто теоретической. В настоящее время активно ведутся экспериментальные исследования данной проблемы и благодаря применению передовых физико-химических методов уже сделаны важные открытия и можно ожидать новых интересных результатов.


Александр Иванович Опарин (1894–1980)


Новые открытия позволили дополнить теорию антропогенеза. Но переход от животного мира к человеку и сейчас ещё остаётся одной из самых больших загадок биологии.

Третье направление – физико-химическая биология, исследующая строение живых объектов при помощи современных физических и химических методов. Это быстро развивающееся направление биологии, важное как в теоретическом, так и в практическом отношении. Можно с уверенностью говорить, что в физико-химической биологии нас ждут новые открытия, которые позволят решить многие проблемы, стоящие перед человечеством.

Развитие биологии как науки. Современная биология уходит корнями в древность и связана с развитием цивилизации в странах Средиземноморья. Нам известны имена многих выдающихся учёных, внёсших вклад в развитие биологии. Назовём лишь некоторых из них.

Гиппократ (460 – ок. 370 до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней. Его считают основоположником медицины.

Аристотель (384–322 до н. э.) делил окружающий мир на четыре царства: неодушевлённый мир земли, воды и воздуха; мир растений; мир животных и мир человека. Он описал многих животных, положил начало систематике. В написанных им четырёх биологических трактатах содержались практически все известные к тому времени сведения о животных. Заслуги Аристотеля настолько велики, что его считают основоположником зоологии.

Теофраст (372–287 до н. э.) изучал растения. Им описано более 500 видов растений, даны сведения о строении и размножении многих из них, введены в употребление многие ботанические термины. Его считают основоположником ботаники.

Гай Плиний Старший (23–79) собрал известные к тому времени сведения о живых организмах и написал 37 томов энциклопедии «Естественная история». Почти до Средневековья эта энциклопедия была главным источником знаний о природе.

Клавдий Гален в своих научных исследованиях широко использовал вскрытия млекопитающих. Он первым сделал сравнительно-анатомическое описание человека и обезьяны. Изучал центральную и периферическую нервную систему. Историки науки считают его последним великим биологом древности.


Клавдий Гален (ок. 130 – ок. 200)


В Средние века господствующей идеологией была религия. Подобно другим наукам, биология в этот период ещё не выделилась в самостоятельную область и существовала в общем русле религиозно-философских взглядов. И хотя накопление знаний о живых организмах продолжалось, о биологии как науке в тот период можно говорить лишь условно.

Эпоха Возрождения является переходной от культуры Средних веков к культуре Нового времени. Коренные социально-экономические преобразования того времени сопровождались новыми открытиями в науке.

Самый известный учёный той эпохи Леонардо да Винчи (1452–1519) внёс определённый вклад и в развитие биологии.

Он изучал полёт птиц, описал многие растения, способы соединения костей в суставах, деятельность сердца и зрительную функцию глаза, сходство костей человека и животных.

Во второй половине XV в. естественнонаучные знания начинают быстро развиваться. Этому способствовали географические открытия, позволившие существенно расширить сведения о животных и растениях. Быстрое накопление научных знаний о живых организмах вело к разделению биологии на отдельные науки.

В XVI–XVII вв. стали стремительно развиваться ботаника и зоология.

Изобретение микроскопа (начало XVII в.) позволило изучать микроскопическое строение растений и животных. Были открыты невидимые невооружённым глазом микроскопически малые живые организмы – бактерии и простейшие.

Большой вклад в развитие биологии внёс Карл Линней, предложивший систему классификации животных и растений.

Карл Максимович Бэр (1792–1876) в своих работах сформулировал основные положения теории гомологичных органов и закона зародышевого сходства, заложившие научные основы эмбриологии.


Карл Линней (1707–1778)


Жан Батист Ламарк (1774–1829)


В 1808 г. в работе «Философия зоологии» Жан Батист Ламарк поставил вопрос о причинах и механизмах эволюционных преобразований и изложил первую по времени теорию эволюции.

Огромную роль в развитии биологии сыграла клеточная теория, которая научно подтвердила единство живого мира и послужила одной из предпосылок возникновения теории эволюции Чарлза Дарвина. Авторами клеточной теории считают зоолога Теодора Шванна (1818–1882) и ботаника Маттиаса Якоба Шлейдена (1804–1881).

На основе многочисленных наблюдений Ч. Дарвин опубликовал в 1859 г. свой основной труд «О происхождении видов путём естественного отбора, или Сохранении благоприятствуемых пород в борьбе за жизнь», в котором сформулировал основные положения теории эволюции, предложил механизмы эволюции и пути эволюционных преобразований организмов.

В XIX в. благодаря работам Луи Пастера (1822–1895), Роберта Коха (1843–1910), Ильи Ильича Мечникова в качестве самостоятельной науки оформилась микробиология.

XX век начался с переоткрытия законов Грегора Менделя, что ознаменовало собой начало развития генетики как науки.

В 40–50-е годы XX в. в биологии стали широко использоваться идеи и методы физики, химии, математики, кибернетики и других наук, а в качестве объектов исследования – микроорганизмы. В результате возникли и стали бурно развиваться как самостоятельные науки биофизика, биохимия, молекулярная биология, радиационная биология, бионика и др. Исследования в космосе способствовали зарождению и развитию космической биологии.

В XX в. появилось направление прикладных исследований – биотехнология. Это направление, несомненно, будет стремительно развиваться и в XXI в. Более подробно об этом направлении развития биологии вы узнаете при изучении главы «Основы селекции и биотехнологии».


Илья Ильич Мечников (1845–1916)


Грегор Мендель (1822–1884)


В настоящее время биологические знания используются во всех сферах человеческой деятельности: в промышленности и сельском хозяйстве, медицине и энергетике.

Чрезвычайно важное значение имеют экологические исследования. Мы, наконец, стали осознавать, что хрупкое равновесие, существующее на нашей маленькой планете, легко разрушить. Перед человечеством встала грандиозная задача – сохранение биосферы с целью поддержания условий существования и развития цивилизации. Без биологических знаний и специальных исследований решить её невозможно. Таким образом, в настоящее время биология стала реальной производительной силой и рациональной научной основой отношений между человеком и природой.

Классическая биология. Эволюционная биология. Физико-химическая биология.

1. Какие направления в развитии биологии вы можете выделить?

2. Какие великие учёные древности внесли заметный вклад в развитие биологических знаний?

3. Почему в Средние века о биологии как науке можно было говорить лишь условно?

4. Почему современную биологию считают комплексной наукой?

5. Какова роль биологии в современном обществе?

Подготовьте сообщение на одну из следующих тем:

1. Роль биологии в современном обществе.

2. Роль биологии в космических исследованиях.

3. Роль биологических исследований в современной медицине.

4. Роль выдающихся биологов – наших соотечественников в развитии мировой биологии.

Насколько изменились взгляды учёных на разнообразие живого, можно продемонстрировать на примере разделения живых организмов на царства.

Ещё в 40-е годы XX столетия все живые организмы делились на два царства: Растения и Животные. В царство растений включались также бактерии и грибы. Позднее более детальное изучение организмов привело к выделению четырёх царств: Прокариоты (Бактерии), Грибы, Растения и Животные. Данная система приводится в школьной биологии.

В 1959 г. было предложено делить мир живых организмов на пять царств: Прокариоты, Протисты (Простейшие), Грибы, Растения и Животные.

Данная система часто приводится в биологической (особенно переводной) литературе.

Разработаны и продолжают разрабатываться и другие системы, включающие 20 и более царств. Например, предложено выделить три надцарства: Прокариоты, Археи (Архебактерии) и Эукариоты. Каждое надцарство включает несколько царств.

§ 2. Методы исследования в биологии

1. Чем наука отличается от религии и искусства?

2. Какова основная цель науки?

3. Какие методы исследования, применяемые в биологии, вы знаете?


Наука как сфера человеческой деятельности. Наука – одна из сфер человеческой деятельности, цель которой – изучение и познание окружающего мира. Для научного познания необходим выбор определённых объектов исследования, проблем и методов их изучения. Каждая наука имеет свои методы исследования. Однако независимо от того, какие методы используются, для каждого учёного важнейшим всегда остаётся принцип: «Ничего не принимай на веру». Главная задача науки – построение системы достоверного знания, основанного на фактах и обобщениях, которые можно подтвердить или опровергнуть. Научные знания постоянно берутся под сомнение и принимаются лишь при достаточных доказательствах. Научным фактом (греч. factum – сделанное) является лишь тот, который можно воспроизвести и подтвердить.

Научный метод (греч. methodos – путь исследования) – это совокупность приёмов и операций, используемых при построении системы научных знаний.

Вся история развития биологии наглядно свидетельствует о том, что она определялась разработкой и применением новых методов исследования. Основными методами исследования, применяемыми в биологических науках, являются описательный, сравнительный, исторический и экспериментальный.

Описательный метод. Он широко применялся ещё учёными древности, занимавшимися сбором фактического материала и его описанием. В основе его лежит наблюдение. Практически до XVIII в. биологи в основном занимались описанием животных и растений, делали попытки первичной систематизации накопленного материала. Но описательный метод не потерял своего значения и сегодня. Например, он используется при открытии новых видов или изучении клеток с помощью современных методов исследования.

Сравнительный метод. Он позволил выявлять сходства и различия между организмами и их частями и стал применяться в XVII в. Использование сравнительного метода позволило получить данные, необходимые для систематизации растений и животных. В XIX в. он был использован при разработке клеточной теории и обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. В наше время сравнительный метод также широко применяется в различных биологических науках. Однако если бы в биологии использовались лишь описательный и сравнительный методы, то она так и осталась бы в рамках констатирующей науки.

Исторический метод. Этот метод помогает осмыслить полученные факты, сопоставить их с ранее известными результатами. Он стал широко применяться во второй половине XIX в. благодаря работам Ч. Дарвина, который с его помощью научно обосновал закономерности появления и развития организмов, становления их структур и функций во времени и пространстве. Применение исторического метода позволило превратить биологию из науки описательной в науку, объясняющую, как произошли и как функционируют многообразные живые системы.

Экспериментальный метод. Применение экспериментального метода в биологии связывают с именем Уильяма Гарвея, который использовал его в своих исследованиях при изучении кровообращения. Но широко применяться в биологии он начал лишь с начала XIX в., прежде всего при изучении физиологических процессов. Экспериментальный метод позволяет изучать то или иное явление жизни с помощью опыта.

Большой вклад в утверждение экспериментального метода в биологии внёс Г. Мендель, который, изучая наследственность и изменчивость организмов, впервые использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основании получаемых результатов. Работа Г. Менделя стала классическим образцом методологии экспериментальной науки.


Уильям Гарвей (1578–1657)


В XX в. экспериментальный метод стал ведущим в биологии. Это стало возможным благодаря появлению новых приборов для биологических исследований (электронный микроскоп, томограф и др.) и использованию методов физики и химии в биологии.

В настоящее время в биологическом эксперименте широко используют различные виды микроскопии, включая и электронную с техникой ультратонких срезов, биохимические методы, разнообразные способы культивирования и прижизненного наблюдения культур клеток, тканей и органов, метод меченых атомов, рентгеноструктурный анализ, ультрацентрифугирование, хроматографию и т. д. Не случайно во второй половине XX в. в биологии развилось целое направление – создание новейших приборов и разработка методов исследования.

В биологических исследованиях всё шире применяют моделирование, которое считают высшей формой эксперимента. Так, ведутся активные работы по компьютерному моделированию важнейших биологических процессов, основных направлений эволюции, развития экосистем или даже всей биосферы (например, в случае глобальных климатических или техногенных изменений).

Экспериментальный метод в сочетании с системно-структурным подходом коренным образом преобразил биологию, расширил её познавательные возможности и открыл новые пути для использования биологических знаний во всех сферах человеческой деятельности.

Научный факт. Научный метод. Методы исследования: описательный, сравнительный, исторический, экспериментальный.

1. В чём заключаются основная цель и задача науки?

2. Почему можно утверждать, что развитие биологии определялось разработкой и применением новых научных методов исследования?

3. Какое значение имели описательный и сравнительный методы для развития биологии?

4. В чём сущность исторического метода?

5. Почему экспериментальный метод получил наибольшее распространение в XX в.?

Предложите методы исследования, которые вы будете применять при изучении антропогенного воздействия на какую-либо экосистему (водоём, лес, парк и т. д.).

Предложите несколько своих вариантов путей развития биологии в XXI в.

Какие болезни, по вашему мнению, будут побеждены человечеством при помощи методов молекулярной биологии, иммунологии, генетики в первую очередь.

Научное исследование, как правило, состоит из нескольких этапов (рис. 1). На основании сбора фактов формулируется проблема. Для её решения выдвигаются гипотезы (от греч. hypothesis – предположение). Каждая гипотеза проверяется экспериментально в ходе получения новых фактов. Если полученные факты противоречат гипотезе, то она отвергается. Если гипотеза согласуется с фактами и позволяет делать верные прогнозы, то она может стать теорией (от греч. theoria – исследование). Однако даже верная теория по мере накопления новых фактов может пересматриваться и уточняться. Наглядным примером служит теория эволюции.

Некоторые теории заключаются в установлении связи между различными явлениями. Это правила и законы.

Из правил возможны исключения, а законы действуют всегда. Например, закон сохранения энергии справедлив как для живой, так и неживой природы.

Рис. 1. Основные этапы научного исследования

Изучив рисунок 1, предложите план проведения своего небольшого биологического исследования.

§ 3. Сущность жизни и свойства живого

1. Что такое жизнь?

2. Что считают структурно-функциональной единицей живого?

3. Какие свойства живого вам известны?


Сущность жизни. Вы уже знаете, что биология – это наука о жизни. Но что такое жизнь?

Классическое определение немецкого философа Фридриха Энгельса: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причём с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка» – отражает уровень биологических знаний второй половины XIX в.

В XX в. делались многочисленные попытки дать определение жизни, отражающие всю многогранность данного процесса.

Все определения содержали следующие постулаты, отражающие сущность жизни:

– жизнь есть особая форма движения материи;

– жизнь есть обмен веществ и энергии в организме;

– жизнь есть жизнедеятельность в организме;

– жизнь есть самовоспроизведение организмов, которое обеспечивается передачей генетической информации от поколения к поколению.

Жизнь представляет собой форму движения материи высшую по сравнению с физической и химической формами её существования.

В самом общем смысле жизнь можно определить как активное, идущее с затратой энергии, полученной извне, поддержание и самовоспроизведение специфических структур, состоящих из биополимеров – белков и нуклеиновых кислот.

Ни нуклеиновые кислоты, ни белки в отдельности не являются субстратом жизни. Они становятся субстратом жизни лишь тогда, когда находятся и функционируют в клетках. Вне клеток – это химические соединения.

По определению отечественного биолога В. М. Волькенштейна, «живые тела, существующие на Земле, представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот».

Свойства живого. Для живого характерен ряд общих свойств. Перечислим их.

1. Единство химического состава. Живые существа образованы теми же химическими элементами, что и неживые объекты, но в живых существах 90 % массы приходится на четыре элемента: С, О, N, Н, которые участвуют в образовании сложных органических молекул, таких, как белки, нуклеиновые кислоты, углеводы, липиды.

2. Единство структурной организации. Клетка является единой структурно-функциональной единицей, а также единицей развития почти для всех живых организмов на Земле. Исключением являются вирусы, но и у них свойства живого проявляются, лишь когда они находятся в клетке. Вне клетки жизни нет.

3. Открытость. Все живые организмы представляют собой открытые системы, т. е. системы, устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды.

4. Обмен веществ и энергии. Все живые организмы способны к обмену веществ с окружающей средой. Обмен веществ осуществляется в результате двух взаимосвязанных процессов: синтеза органических веществ в организме (за счёт внешних источников энергии – света и пищи) и процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом.

Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.

5. Самовоспроизведение (репродукция). Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит информация о строении и функциях любого живого организма, заложенная в нуклеиновых кислотах и обеспечивающая специфичность структуры и жизнедеятельности живого.

6. Саморегуляция. Любой живой организм подвергается воздействию непрерывно меняющихся условий окружающей среды. В то же время для протекания процессов жизнедеятельности в клетках необходимы определённые условия. Благодаря механизмам саморегуляции сохраняется относительное постоянство внутренней среды организма, т. е. поддерживается постоянство химического состава и интенсивность течения физиологических процессов, иными словами, поддерживается гомеостаз (от греч. homoios – одинаковый и stasis – состояние).

7. Развитие и рост. В процессе индивидуального развития (онтогенеза) постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост. Кроме того, все живые системы эволюционируют – изменяются в ходе исторического развития (филогенеза).

8. Раздражимость. Любой живой организм способен избирательно реагировать на внешние и внутренние воздействия.

9. Наследственность и изменчивость. Преемственность поколений обеспечивается наследственностью. Потомки не являются копиями своих родителей из-за способности наследственной информации к изменениям – изменчивости.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе. Например, кристаллы в насыщенном растворе соли могут «расти». Однако этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Для горящей свечи тоже характерны процессы обмена веществ и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.

Следовательно, все перечисленные выше свойства в своей совокупности характерны только для живых организмов.

Жизнь. Открытая система.

1. Почему очень сложно дать определение понятия «жизнь»?

2. В чём отличие химической организации живых организмов от объектов неживой природы?

3. Почему живые организмы называются открытыми системами?

4. Чем принципиально отличаются процессы обмена у живых организмов и в неживой природе?

5. Какова роль изменчивости и наследственности в развитии жизни на нашей планете?

Сравните сущность процессов роста, размножения и обмена веществ в неживой природе и у живых организмов.

Приведите примеры свойств, характерных для живого организма, которые можно наблюдать и у неживых объектов.

Организм (от лат. organizo – устраиваю) – это особь, индивид (от лат. individuus – неделимый), самостоятельно взаимодействующий со средой своего обитания. Термин «организм» легко понять, но почти невозможно однозначно определить. Организм может состоять из одной клетки и может быть многоклеточным. Разные колониальные организмы могут состоять из однородных организмов, например вольвокс, или представлять собой комплекс высокодифференцированных особей, составляющих единое целое, например португальский кораблик – колониальное кишечнополостное животное. Иногда даже отделённые друг от друга особи образуют группы, отличающиеся определёнными индивидуальными свойствами, например у пчёл, как и у других социальных насекомых, семья имеет ряд свойств организма.