Различных приборов и устройств. Электрические измерения и приборы

28.08.2023

ЛЕКЦИЯ № 1

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

Таблица 1.1

Наименование

единицы измерения

Условное обозначение

Наименование

единицы измерения

Условное обозначение

Миллиампер

Микроампер

Милливольт

Киловатт

Коэффициент мощности

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.

Таблица 1.2

Тип прибора

Условное обозначение

Род измеряемого тока

Достоинства

Недостатки

электрический

Постоянный

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

магнитный

Переменный

постоянный

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

динамический

Переменный

постоянный

Высокая точность

Низкая чувствительность,

чувствителен к помехам

Индукционный

Переменный

Высокая надежность, к перегрузкам устойчив

Низкая точность

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров - приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно - и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи .

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения - электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры - параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

https://pandia.ru/text/78/613/images/image013_9.gif" width="296" height="325">

https://pandia.ru/text/78/613/images/image016_8.gif" width="393" height="313 src=">

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

П" в старшем разряде) и изменить полярность входного сигнала при мигании знака "-" в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux - показание прибора;

зн. - единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений - понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.

Класс точности – относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения - это разность между измеренным значением х и ее истинным значением хи:

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность https://pandia.ru/text/78/613/images/image020_7.gif" width="99" height="45"> (1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1..gif" width="15" height="19 src="> тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G - обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее - рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

https://pandia.ru/text/78/613/images/image019_7.gif" width="15 height=19" height="19"> с классом точности прибора G выражается формулой:

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

где А - результат измерения;

Абсолютная погрешность прибора;

Р - вероятность, при статистической обработке данных.

При этом А и https://pandia.ru/text/78/613/images/image023_5.gif" width="15" height="17"> не должна иметь более двух значащих цифр.

Электроизмерительные приборы востребованы и представлены в большом разнообразии. Они применяются в промышленности, транспортной сфере и других областях деятельности. Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.

Конструкция и области применения измерительных приборов

Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

Дисплей или циферблат всегда присутствуют на приборах измерения электротока

Устройства разного типа применяют в следующих сферах деятельности:

  • медицина;
  • связь и энергетика;
  • научные исследования;
  • бытовые условия;
  • транспортная промышленность;
  • производство любого типа.

Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант - счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Видео: принцип работы измерительных приборов

Варианты классификации приборов измерения тока

Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.

Дисплей может быть цифровым или в виде стрелки и шкалы

Виды конструкций

Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы. В результате можно выделить несколько вариантов. Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.

Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений

Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне. В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.

Классификация по роду измеряемой величины

Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить. Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности. В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:

  • амперметры необходимы для измерения тока;
  • омметры служат для определения сопротивлений;
  • ваттметры позволяют узнать мощность;
  • счётчики используют для учёта энергии;
  • частотомеры нужны для определения частот тока переменного типа;
  • угол сдвига фаз измеряют фазометры;
  • узнать малые величины помогают гальванометры;
  • осциллографы определяют часто меняющиеся показатели.

Осциллограф имеет сложную конструкцию, помогающую получить точный результат

Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.

Разделение по роду тока

Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения. В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока. Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.

Способы отображения информации

Существует два варианта: цифровые и аналоговые. Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную. При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.

Цифровой дисплей характеризуется чёткостью отображения

Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.

Аналоговые варианты часто оснащены шкалой и стрелкой. Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса. Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.

Шкала со стрелкой имеет определённый диапазон измерений

Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.

Иные варианты систематизации

Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:

  • назначение, то есть оборудование может быть вспомогательным, для измерений, бытового или профессионального применения;
  • система выдачи итогового результата, в зависимости от чего изделия могут быть регистрирующими или с выводом информации на экран;
  • способ измерения. Оборудование может быть использовано для сравнения или оценки показателей.

Обозначения приборов

Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:

  • «М» или «К» означают, что прибор модернизированный или контактный;
  • «Д» - электродинамическое устройство;
  • «Н» означает, что конструкция самопишущая;
  • «Р» указывает на преобразователи измерительного типа;
  • индукционные устройства обозначаются буквой «И»;
  • «Л» - это логометры.

Разнообразные приборы имеют множество вариантов классификации

При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.

Класс точности электроизмерительных устройств

Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора. Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования. Выделяют по ГОСТу такие классы точности, как: 4,0 и 0,05; 0,1 и 0,2, а также 0,5 и 1,0, 1,5 и 2,5. Класс не превышает относительной погрешности устройства, определяющейся по формуле: - ɣ = ∆x / xпр * 100%. При этом ɣ - приведённая погрешность, ∆x - абсолютная погрешность, а xпр является измеряемым параметром.

Видео: классификация электроизмерительного оборудования

Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.

Все электроизмерительные приборы по принципу действия разделяются на электромагнитные, магнитоэлектрические, электродинамические, тепловые и электростатические. Измерение тока, напряжения, сопротивления и мощности в большей части электроизмерительных приборов сводится к определению силы тока по результатам его взаимодействия с магнитным полем проводника или по удлинению проводника вследствие его нагрева при прохождении тока.

Так, принцип действия электромагнитных приборов, можно уяснить из рис. 175, а. При пропускании измеряемого тока через катушку 1 сердечник из мягкой листовой стали 2 будет втягиваться в катушку, поворачивая стрелку 3, сидящую на оси, скрепленной с сердечником. Отклонение стрелки покажет величину измерения на шкале, соответственно проградуированной. Воздушный тормоз 4 (демпфер) служит для успокоения колебаний стрел-ки. Электромагнитные приборы могут применяться для измерений в цепях как переменного , так и постоянного тока .

Принцип действия магнитоэлектрических приборов легко уясняется из рис. 175, б; он аналогичен принципу работы электродвигателя. При пропускании измеряемого тока через рамку (несколько витков изолированной проволоки), помещенную между полюсами постоянного магнита, магнитные поля их взаимодейству-ют, и рамка, и сидящая на одной оси с ней стрелка поворачивают-ся на определенный угол, пропорциональный току или напряжению. Эти приборы дают точные показания, но без дополнительных устройств могут применяться для измерения небольших значений и только для постоянного тока.

В электродинамических пpибоpах, в отличие от магнитоэлектрических, магнитное поле, в котором поворачивается рамка, создается не постоянным магнитом, а катушкой с током. У этих приборов (рис. 175, в) имеются две катушки: неподвижная 1 и подвижная II (рамка, жестко соединенная со стрелкой). На рис. 175, в справа показана схема соединения катушек при измерении тока. При пропускании измеряемого тока через катушки их поля взаимодействуют, в результате чего подвижная катушка, связанная со стрелкой, отклоняется и показание снимается по шкале, соответственно проградуированной. Эти приборы применяют для измерений переменного и постоянного тока.

Принцип работы тепловых приборов основан на удлинении проводников, нагреваемых измеряемым током. Они могут при-меняться как для постоянного, так и переменного тока.

Электростатические приборы измеряют напряжение в цепи по силе взаимного притяжения пластин конденсатора .

Все электроизмерительные приборы, в зависимости от ошибок (погрешностей), которые получаются при измерении, разделяются по классу точности. В России выпускаются приборы семи классов:


0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры показывают класс точности прибора и означают отноше-ние в процентах максимальной основной аб-солютной погрешности к максимальному зна-чению измеряемой данным прибором величи-ны.

На судах находят широкое применение следующие приборы:

1) для измерения силы тока в цепи — амперметры, включаемые в цепь последовательно;

2) для измерения напряжения тока в цепи — вольтметры, включаемые параллельно тому участку, на концах которого измеряется напряжение;

3) для измерения сопротивления участка цепи — омметры;

4) для измерения мощности — ваттметры.

При постоянном токе мощность измеряют, пользуясь амперметром и вольтметром, включенными в цепь (рис. 176, а). Произведение показаний этих приборов в какой-либо момент времени даст мощность в ваттах. Ваттметры показывают величину мощности в ваттах на специально отградуированной шкале. Схема включе-ния ваттметра в сеть приведена на рис. 176, б. Измерительные приборы.

Одним из самых опасных факторов, связанных с эксплуатацией электричества является то, что наличие тока в цепи можно определить, только очутившись под его воздействием, т.е. соприкоснувшись с ним. До этого момента электрический ток ничем не выдает своего присутствия. В связи с таким поведением возникает острая необходимость его обнаружения и измерения. Зная магнитную природу электричества, мы можем не только определить наличие/отсутствие тока, но и измерить его.

Существует много приборов для измерения электрических величин. Многие из них имеют обмотку магнита. Ток, протекая по обмотке, возбуждает магнитное поле и отклоняет стрелку прибора. Чем сильнее ток, тем больше отклоняется стрелка. Для большей точности измерений применяется зеркальная шкала, чтобы взгляд на стрелку был перпендикулярен измерительной панели.

Для измерения тока используется амперметр. Он включается в цепь последовательно. Чтобы измерить ток, величина которого больше номинального, чувствительность прибора уменьшают шунтом (мощным сопротивлением).

Напряжение измеряют вольтметром, к цепи он подключается параллельно.
Комбинированный прибор для измерения и тока и напряжения называют авометром.
Для замеров сопротивления используют омметр или мегомметр. Этими приборами часто прозванивают цепь, чтобы найти обрыв или удостовериться в ее целостности.
Измерительные приборы должны проходить периодическое тестирование.

На крупных предприятиях специально для этих целей создаются измерительные лаборатории. После тестирования прибора лаборатория ставит на его лицевую сторону свое клеймо. Наличие клейма говорит о том, что прибор работоспособен, имеет допустимую точность (погрешность) измерения и, при условии правильной эксплуатации, до следующей поверки его показаниям можно верить.

Счетчик электроэнергии тоже является измерительным прибором, в который добавлена еще и функция учета используемой электроэнергии. Принцип действия счётчика предельно прост, как и его устройство. Он имеет обычный электродвигатель с редуктором, подключенным к колесикам с циферками. При увеличении силы тока в цепи двигатель крутится быстрей, быстрее перемещаются и сами цифры.
В быту мы пользуемся не профессиональной измерительной техникой, но в силу отсутствия необходимости очень точного измерения это не столь существенно.

Класс устройств, которые применяются для измерения электрических величин, называются электроизмерительными приборами. Наиболее известные из них - амперметры, вольтметры и омметры.

Сфера применения

Электроизмерительный прибор является необходимым устройством в связи, энергетике, промышленности, на транспорте, в медицине и научных исследованиях. Применяется это устройство и в быту, например для учета потребленной электроэнергии.
А если применить специальные преобразователи величин неэлектрических в электрические, то диапазон применения электроизмерительных приборов становится значительно шире.

Один из существенных признаков систематизации подобных устройств - воспроизводимая или измеряемая физическая величина. Согласно ему приборы подразделяются:

На измеряющие силу электрического тока - амперметры,

Измеряющие электрическое напряжение - вольтметры,

Измеряющие электрическое сопротивление - омметры,

Измеряющие частоту колебаний электротока - частотомеры,

Измеряющие различные величины - мультиметры или авометры, тестеры,

Для воспроизведения указанных сопротивлений - магазины сопротивлений,

Измеряющие мощность электрического тока - варметры и ваттметры,

Измеряющие потребление электрической энергии - электросчетчики и пр.

Другие признаки систематизации

Существуют и другие признаки, по которым классифицируют такой вид устройств, как электроизмерительный прибор. Это может быть:

1. Назначение: меры, измерительные приборы и преобразователи, измерительные системы и установки, прочие вспомогательные устройства.

2. Система предоставления полученного результата: регистрирующие (графическое изображение на фотопленке или бумаге либо в виде компьютерного файла) или показывающие.

3. Способ измерения: приборы сравнения или непосредственной оценки.

4. Способ использования и конструктивные особенности: переносные, щитовые (закрепляются на специальной панели или щите), стационарные.

По принципу действия классификация электроизмерительных приборов выглядит следующим образом:

  • электромеханические, которые, в свою очередь, подразделяются:

На электромагнитные,

Магнитоэлектрические,

Электростатические,

Индукционные,

Электродинамические,

Магнитодинамические,

Ферродинамические;

  • электронные;
  • электрохимические;
  • термоэлектрические.

Система обозначений

За рубежом заводы-изготовители устанавливают свои обозначения на выпускаемых измерительных устройствах. В России и некоторых бывших республиках Советского Союза традиционна унифицированная система знаков. Основана она на принципе работы конкретного прибора. Основные электроизмерительные приборы в обозначении всегда имеют прописную букву русского алфавита, которая указывает на принцип действия устройства. А также число, которое обозначает условный номер модели. Иногда можно встретить прописную букву М, которая обозначает, что прибор модернизированный или К (контактный). Есть и другие, обозначения. Например, Д (электродинамические приборы), Н (самопишущие приборы), Р (меры, устройства, измеряющие параметры элементов электросетей, измерительные преобразователи), И (индукционные приборы), Л (логометры) и пр.

Показатели точности

Одна из главных характеристик прибора для электроизмерений - класс точности. Их существует несколько. А определяется он по зависимости от допустимого предела погрешности, вызванной конструктивными особенностями отдельно взятого устройства.

Точность электроизмерительных приборов не может быть равна погрешности относительной или абсолютной. Последняя не является определителем точности, а относительная имеет зависимость от значения величины, подвергшейся изменению, то есть для различных участков шкалы будет иметь разные значения.

Поэтому для характеристики точности электроприбора применяется приведенная погрешность (ɣ). Определяется она отношением погрешности абсолютной конкретного прибора (∆x) к максимуму (или пределу) измеряемой величины (x пр). Полученная величина, выраженная в процентах, и будет классом точности конкретного прибора:

- ɣ = ∆x / x пр * 100%.

Любой электроизмерительный прибор на шкале обязательно имеет указание на класс точности. Согласно ГОСТу он может быть 0,05, 0,1, 0,2, 0,5, 1,0, 1,5, 2,5 и 4,0. На этом основании приборы можно классифицировать следующим образом:

Класс точности 0,05 и 0,1 - образцовые, использующиеся для поверки точных приборов (например, лабораторных);

Класс точности 0,2 и 0,5 - лабораторные, используются в лабораториях для производства измерений и поверки технических приборов;

Класс точности 1,0, 1,5, 2,5 и 4,0 - технические, применяются для технических измерений.

Электроизмерительные приборы: принцип действия

Работа большей части электроизмерительных приборов основана на магнитоэлектрическом эффекте. Электроны, двигаясь по проводнику электрической цепи, образуют вокруг себя магнитное поле. В нем и перемещается стрелка измеряющего устройства, реагируя на силу окружающего поля. Чем магнитное поле слабее, тем меньше отклонение стрелки и наоборот.

Если в непосредственной близости от проводника, через который не протекает электрический ток, подвешена стрелка, то реагировать она может только на магнитное поле Земли. Но если через проводник пропустить ток, стрелка будет уже реагировать на магнитное поле электрического тока. Таким образом, механическое отклонение стрелки провоцируют электроны, двигаясь через проводник. И следовательно, чем больше электрический ток, тем сильнее образованное им поле и тем дальше от начального положения отклоняется стрелка. Этот незатейливый принцип является основополагающим для большинства электроизмерительных приборов.

Один электроизмерительный прибор отличается от другого не измерительным отклонением стрелки (приборов с цифровым индикатором это не касается), а внутренними цепями и способами создания электромагнитного поля. Как известно, для движения в электрической сети электронов необходима нагрузка. Поэтому это движение имеет некоторые различия в омметрах, вольтметрах и амперметрах, имеющих измерительные клещи. Приборы с такими захватами «вытягивают» магнитное поле из пластинок, их образующих. В вольтметре для получения магнитного поля применяется резистор, который получает нагрузку при подаче на цепь напряжения. Омметр имеет индивидуальный источник питания и использует устройство, которое подвергает измерению, для образования магнитного поля.

Описанные выше приборы проводят измерения одинаковым способом, притом что подача нагрузки и источники питания у них разные.

Измерительное смещение стрелки, провоцируемое магнитным полем движущихся электронов, указывает на какое-либо деление шкалы. Их обычно несколько, и у каждой свой предел измерения напряжения, сопротивления и тока. На некоторых приборах для удобства пользователя продуман селекторный переключатель.

Как работают цифровые измерители

Цифровые электроизмерительные приборы имеют высокий класс точности (погрешность варьируется от 0,1 до 1,0 %) и широкий предел измерений. Они быстродейственны и могут совместно работать с электронно-вычислительными машинами, что позволяет передавать результаты измерений без каких-либо искажений на различные расстояния.

Эти устройства считаются приборами сравнения и непосредственной оценки. Их работа основана на принципе перевода измеряемой величины в код, благодаря чему пользователь имеет цифровое представление информации. Ещё какие электроизмерительные приборы относятся к цифровым? Это устройства, которые, измеряя непрерывную электрическую величину, автоматически конвертируют её в дискретную, кодируют и выдают результат в цифровой форме, удобной для считывания пользователем.

Устройства, расположенные в одном корпусе

Это приборы, которые для неодновременного измерения нескольких величин используют один механизм для измерения. Или же они имеют несколько преобразователей с общим для всех отсчетным устройством (шкалой). Она градуируется в единицах измеряемых величин. Чаще всего комбинированные электроизмерительные приборы совмещают в себе устройства, измеряющие силу постоянного или переменного тока и электрического напряжения (ампервольтметры); сопротивления, силы постоянного и переменного тока, напряжение (авометры или ампервольтомметры). А также существуют универсальные цифровые электроизмерительные приборы, которые измеряют напряжение постоянного и переменного тока, индуктивность и количество импульсов.

Примером такого устройства может служить новая разработка "Актаком ADS-4031".Прибор от компании "Актаком" гармонично сочетает в себе функциональный генератор, цифровой осциллограф, частотомер, RLC-метр и цифровой мультиметр. Кроме основных пяти совмещенных устройств, осциллографический тестер благодаря дополнительным приспособлениям может использоваться для ряда других измерительных задач.

Производство и разработка электроизмерительных приборов

На территории России работают и активно продвигают на рынок свою продукцию как новые предприятия, так и заводы, ведущие свою историю со времен СССР. Рассмотрим их более подробно.

ОАО «Электроприбор»

Один из таких долгожителей - Чебоксарский завод электроизмерительных приборов. Сегодня он называется ОАО «Электроприбор». Его цеха выпускают аналоговые и цифровые электроизмерительные устройства и шунты. В прайсах завода - амперметры, вольтметры, ватт- и варметры, многофункциональные устройства для измерений. А также измерительные преобразователи напряжения, тока, частоты и мощности. В современных реалиях завод принял к производству линейку вспомогательных изделий - шунтов, которые способны расширять диапазон измерения по напряжению и току. Выпускает «Электроприбор» трансформаторы и добавочные сопротивления.

Пользуются большим спросом приборы с электронными преобразователями, измеряющими частоту реактивной или активной мощности, а также ее коэффициент. Не менее популярны индикаторы, приборы для оснащения специализированных учебных кабинетов, различные цифровые приборы и комплектующие. В конце прошлого века предприятие получило сертификат, подтверждающий систему менеджмента качества ИСО 9001, соответствующую международному стандарту.

Чебоксарский завод более 55 лет занимает лидерские позиции среди производителей электроизмерительных приборов.

ОАО «НИИ Электромера»

65 лет назад, согласно Постановлению Совета министров СССР, был образован ВНИИЭП - Всесоюзный научно-исследовательский институт электроизмерительных приборов. Кроме научно-исследовательских работ по разработке новейших образцов техники здесь изготавливали небольшие серии высокоточных, уникальных приборов.
Разрабатывая системы электроизмерительных приборов, предназначенных для автоматизации экспериментов и промиспытаний сложной техники, институт создал измерительно-управляющие комплексы.

В конце прошлого столетия ВНИИЭП преобразован в ОАО «НИИ Электромера».

ООО «Белтехприбор»

Одно из современных предприятий - ООО «Белтехприбор». Здесь постоянно расширяют номенклатуру выпускаемой продукции. Сегодня контрольно-измерительные приборы и низковольтное оборудование поставляется на отечественные предприятия машиностроительного, электромеханического, топливно-энергетического и нефтеперерабатывающего профиля.


Лабораторная работа № 2-0

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЯ

Цель работы:познакомитьсяс электроизмерительными приборами и методами измерений.

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

Электроизмерительные приборы. Типы приборов.

Электроизмерительные приборы служат для контроля режима работы электрических установок, их испытания и учета расходуемой электрической энергии.

В зависимости от назначения электроизмерительные приборы подразделяют:

1) амперметры (измерители тока);

2) вольтметры (измерители напряжения);

3) ваттметры (измерители мощности);

4) омметры (измерители сопро­тивления);

5) частотомеры (измерители частоты переменного тока);

6) счетчики электрической энергии и др.

Типы приборов. В зависимости от способа отсчета приборы подразделяют на приборы непосредственного отсчета (непосредственной оценки) и приборы сравнения. Приборами непосредственного отсчета называются такие, которые позволяют производить отсчет измеряемой величины непосредственно на шкале. К ним отно­сятся амперметры, вольтметры, ваттметры и др. Основной частью каждого такого прибора является измери­тельный механизм. При воздействии измеряемой электри­ческой величины (тока, напряжения, мощности и др.) на измерительный механизм прибора установленная на его оси стрелка поворачивается на некоторый угол, по которому на шкале прибора определяют значение измеряемой величины.

В электроизмерительных приборах сравнения изме­рения осуществляют путем сравнения измеряемой вели­чины с какой-либо образцовой мерой (эталоном). К ним относятся мосты для измерения сопротивлений и ком­пенсационные измерительные устройства (потенцио­метры).



Действие электроизмерительных приборов непосред­ственной оценки основано на различных проявлениях электрического тока (магнитном, тепловом, электроди­намическом и пр.). Отметим некоторые особенности конструкции деталей приборов. Шкала служит для производства отсчета измеряемой величины. Цифры возле делений обозначают либо число делений от нуля шкалы (обычно в приборах 0,2; 0,5 класса точности), либо непосредственно значение измеряемой величины (остальные классы точности). В первом случае для получения значения измеряемой величины в практических единицах нужно определить цену одного деления шкалы прибора (иногда называемую постоянной прибора) и умножить ее на число отсчитанных делений. Например, имеем прибор, который может измерять напряжение от 0 до 250 В (рис. 1).

Цена деления: С = 250 / 50 = 5 В / дел.

Рис. 1.

Шкала вольтметра от 0 до 250 В

При отсчете луч зрения должен быть перпендикулярен шкале, иначе возможна погрешность от параллакса. При отсчете по зеркальной шкале глаз наблюдателя должен быть расположен так, чтобы конец стрелки покрывал свое изображение в зеркале. В целях сокращения промежутка времени, необходимого для успокоения подвижной части прибора (после включения), имеются специальные тормозящие устройства (демпферы).

В зависимости от принципа действия электроизмерительные приборы относятся к магнитоэлектрической, электромагнитной, электродинамической, термоэлектрической, выпрямительной, индукционной и электростатической системам. Каждая из этих систем имеет условное обозначение.