Примеры линейных элементов электрических цепей. Линейные и нелинейные элементы электрической цепи

19.03.2024

Если зависимость U (I ) или I (U линейна и его сопротивление R постоянно ( R onst ) , то такой элемент называют линейным (ЛЭ) , а электрическую цепь, состоящую только из линейных элементов − линейной электрической цепью .

ВАХ линейного элемента симметрична и представляет собой прямую, проходящую через начало координат (рис. 16, кривая 1). Таким образом, в линейных электрических цепях выполняется закон Ома.

Если зависимость U (I ) или I (U ) какого-либо элемента электрической цепи не линейна, а его сопротивление зависит от тока в нем или напряжения на его выводах ( R ≠с onst ) , то такой элемент называют не линейным (НЭ) , а электрическую цепь при наличии хотя бы одного нелинейного элемента − нелинейной электрической цепью .

ВАХ нелинейных элементов непрямолинейны , и иногда могут быть несимметричны, например, у полупроводниковых приборов (рис. 16, кривые 2, 3, 4). Таким образом, в нелинейных электрических цепях зависимость между током и напряжением не подчиняется закону Ома.

Рис. 16. ВАХ линейного и нелинейных элементов:

кривая 1 – ВАХ ЛЭ (резистора); кривая 2 – ВАХ НЭ (лампы накаливания с металлической нитью); кривая 3 – ВАХ НЭ (лампы накаливания с угольной нитью;

кривая 4 – ВАХ НЭ (полупроводникового диода)

Примером линейного элемента является резистор.

Примерами нелинейных элементов служат: лампы накаливания, терморезисторы, полупроводниковые диоды, транзисторы, газоразрядные лампы и т.д. Условное обозначение НЭ приведено на рис. 17.

Например, с увеличением тока, протекающего по металлической нити накаливания электрической лампы, увеличивается ее нагрев, а следовательно, возрастает ее сопротивление. Таким образом, сопротивление лампы накаливания непостоянно.

Рассмотрим следующий пример. Приведены таблицы со значениями сопротивлений элементов при различных значениях тока и напряжения. Какая из таблиц соответствует линейному, какая нелинейному элементу?

Таблица 3

R , Ом

Таблица 4

R , Ом

Ответьте на вопрос, на каком из графиков изображен закон Ома? Какому элементу соответствует этот график?

1 2 3 4

А что можно сказать о графиках 1,2 и 4? Какие элементы характеризуют эти графики?

Нелинейный элемент в любой точке ВАХ характеризуется статическим сопротивлением, которое равно отношению напряжения к току, соответствующих этой точке (рис. 18). Например, для точки а :

.

Кроме статического сопротивления нелинейный элемент характеризуется дифференциальным сопротивлением, под которым понимается отношение бесконечно малого или весьма малого приращения напряжения ∆U к соответствующему приращению ∆I (рис. 18). Например, для точки а ВАХ можно записать

где β – угол наклона касательной, проведенной через точку а .

Данные формулы составляют основу аналитического метода расчета простейших нелинейных цепей.

Рассмотрим примеры. Если статическое сопротивление нелинейного элемента при напряжении U 1 =20 В равно 5 Ом, то сила тока I 1 составит…


Статическое сопротивление нелинейного элемента при токе 2 А составит…


Вывод по третьему вопросу: различают линейные и нелинейные элементы электрической цепи. В нелинейных элементах не выполняется закон Ома. Нелинейные элементы характеризуются в каждой точке ВАХ статическим и дифференцированным сопротивлением. К нелинейным элементам относятся все полупроводниковые приборы, газоразрядные лампы и лампы накаливания.

Вопрос № 4. Графический метод расчета нелинейных

электрических цепей (15 мин.)

Для расчета нелинейных электрических цепей применяются графический и аналитический методы расчета. Графический метод более простой и его мы и рассмотрим более подробно.

Пусть источник ЭДС Е с внутренним сопротивлением r 0 питает два последовательно соединенных нелинейных элемента или сопротивления НС1 и НС2 . Известны Е , r 0 , ВАХ 1 НС1 и ВАХ 2 НС2. Требуется определить ток в цепи I н

Сначала строим ВАХ линейного элемента r 0 . Это прямая, проходящая через начало координат. Напряжение U, падающее на сопротивления контура, определяется выражением

Чтобы построить зависимость U = f ( I ) , необходимо сложить графически ВАХ 0, 1 и 2 , суммируя ординаты, соответствующие одной абсциссе, затем другой и т.д. Получаем кривую 3 , представляющую собой ВАХ всей цепи. Использую эту ВАХ, находим ток в цепи I н , соответствующее напряжению U = E . Затем, используя найденное значение тока, по ВАХ 0, 1 и 2 находим искомые напряжение U 0 , U 1 , U 2 (рис. 19).

Пусть источник ЭДС Е с внутренним сопротивлением r 0 питает два параллельно соединенных нелинейных элемента или сопротивления НС1 и НС2 , ВАХ которых известны. Требуется определить ток в ветвях цепи I 1 и I 2 , падения напряжения на внутреннем сопротивлении источника и на нелинейных элементах.

Строим ВАХ I н = f ( U ab ) . Для этого складываем графически ВАХ 1 и 2 , суммируя абсциссы, соответствующие одной ординате, затем другой ординате и т.д. Строим ВАХ всей цепи (кривая 0,1,2 ). Для этого складываем графически ВАХ 0 и 1,2 , суммируя ординаты, соответствующие определенным абсциссам.

Использую эту ВАХ, находим ток в цепи I н , соответствующий напряжению U = E .

Использую ВАХ 1,2 , определяем напряжение U ab , соответствующее найденному току I н , и внутреннее падение напряжения U 0 , соответствующее этому току. Затем, используя ВАХ 1 и 2 находим искомые токи I 1 , I 2 , соответствующие найденному напряжению U ab (рис. 20).

Рассмотрим следующие примеры.

При последовательном соединении нелинейных сопротивлений с характеристиками R 1 и R 2 , если характеристика эквивалентного сопротивления R Э …


    пройдет ниже характеристики R 1

    пройдет выше характеристики R 1

    пройдет, соответствуя характеристике R 1

    пройдет ниже характеристики R 2

При последовательном соединении линейного и нелинейного сопротивлений с характеристиками а и б характеристика эквивалентного сопротивления…


    пройдет ниже характеристики а

    пройдет выше характеристики а

    пройдет, соответствуя характеристике а

    пройдет ниже характеристики б

Вывод по четвертому вопросу: нелинейные электрические цепи постоянного тока составляют основу электронных цепей. Существует два метода их расчете: аналитический и графический. Графический метод расчета позволяет более просто определить все необходимые параметры нелинейной цепи.

Линейные электрические цепи постоянного тока

1.Расчет линейной электрической цепи постоянного тока

Исходные данные:

E 1 =10 В

E 12 =5 В

R 1 =R 2 =R 3 =R 12 =R 23 =R 31 =30 Ом

1.Упростить сложную электрическую цепь (рис. 1), используя метод преобразования треугольника и звезды. Определить токи во всех ветвях сложной цепи (рис.1), используя следующие методы:

·Метод преобразования треугольника и звезды.

.Преобразованную электрическую цепь рассчитать:

·Методом наложения действий э. д. с.

·Методом эквивалентного генератора (определить ток в ветви без э. д. с.).

.Определить токи, направление токов и построить потенциальную диаграмму для одного из контуров схемы с двумя э. д. с.

.Определить коэффициенты четырёхполюсника, считая входными и выходными зажимами зажимы, к которым подключены ветви с э. д. с, и параметры Т-образной и П-образной эквивалентных схем замещения этого четырёхполюсника.

1. Упрощение сложной электрической цепи.

Для упрощения сложной электрической цепи (рис. 1), необходимо выбрать контур, содержащий пассивные элементы. Используем метод преобразования треугольника в звезду (рис. 2).

В результате цепь принимает вид (рис.3):

Найдем новые сопротивления преобразованной цепи. Т.к. по условию все исходные сопротивления одинаковы, то и новые сопротивления будут равны:

2. Расчет преобразованной электрической цепи

2.1 Метод наложения действий Э.Д.С.

Принцип метода наложений действий э. д. с. заключается в том, что в любой ветви схемы ток можно определить, как результат наложения частных токов, получающихся в этой ветви от каждой Э.Д.С. в отдельности. Для определения частных токов на основании исходной схемы (рис. 3) составим частные схемы, в каждой из которых действует одно Э.Д.С.. Получим следующие схемы (рис. 4 а, б):

Из рис.4. видно, что

·Найдем эквивалентное сопротивление в исходной схеме:

·Найдем общее сопротивление в 2-х частных цепях (причем они одинаковые):

·Найдем ток и разность потенциалов между точками 4,2 в первой цепи

·Найдем ток и разность потенциалов между точками 2,4 во второй цепи , а также ток в разветвленной части:

·Найдем токи в исходной цепи :

·Произведем проверку по балансу мощностей:

Т.к. мощность источника тока равна мощности приемника, то следует, что найденное решение верно.

2.2 Метод эквивалентного генератора

Метод эквивалентного генератора даёт возможность определить ток в отдельно взятой пассивной цепи (не имеющей источника Э.Д.С.), не вычисляя токи в других ветвях. Для этого представим нашу цепь в виде двухполюсника.

Определим ток в сопротивлении, рассмотрев режимы холостого хода (ХХ), в котором находим Э.Д.С. эквивалентного генератора, и короткого замыкания (КЗ), с помощью которого вычислим ток короткого замыкания и сопротивление эквивалентного генератора и:

Рис.6. Схема в режиме ХХ (А) и в режиме КЗ(Б)

·Определим Э.Д.С. холостого хода эквивалентного генератора:

·Определим ток короткого замыкания, применив первый закон Кирхгофа:

·Найдем эквивалентное сопротивление 2хП:

Определим ток в исследуемой ветви:

Определение токов и их направлений. Построение потенциальной диаграммы

В целях упрощения исследования электрических цепей и анализа режимов их работы, строят потенциальную диаграмму данной цепи. Потенциальной диаграмой называют графическое изображение распределения потенциалов в электрической цепи в зависимости от сопротивления её элементов.

Рис.7. Схема цепи

Так как точка 0 заземлена, отсюда следует, что

По данным значениям построим диаграмму:

Определение коэффициентов четырехполюсника

Метод четырёхполюсника применяется при необходимости исследования изменения режима одной ветви при изменении электрических характеристик в другой ветви.

Четырёхполюсником называется часть схемы электрической цепи между двумя парами точек, к которым присоединены две ветви. Чаще всего встречаются схемы, в которых одна из ветвей содержит источник, а другая приёмник. Зажимы, к которым присоединяется участок цепи с источником, называются входными, а зажимы, к которым присоединяется приёмник - выходными. Четырёхполюсник, который состоит только из пассивных элементов - пассивный. Если в схему четырёхполюсника входит хоть одна ветвь с ЭДС, то он называется активным.

Напряжения и токи ветвей, включенных к входным и выходным зажимам четырёхполюсника, связаны между собой линейными соотношениями, если вся электрическая цепь состоит и линейных элементов. Так как переменными являются то уравнения, связывающие их, должны предусматривать возможность нахождения двух из них, когда два других известны. Число сочетаний из четырёх по два равно шести, т.е. существуют шесть форм записи уравнений. Основной формой записи является А-форма:

где - напряжения и токи на входе и выходе четырёхполюсника;

постоянные четырёхполюсника, зависящие от конфигурации схемы и величин, входящих в неё сопротивлений.

Задача исследования режима ветви на выходе четырёхполюсника в связи с режимом на входе сводится на первом этапе к определению его постоянных. Их измеряют расчётным путем или измерением.

Рис.8. Исходная цепь

Преобразуем цепь:

Рис.9. Преобразованная цепь

·Определим параметры четырехполюсника, используя режимы ХХ и КЗ:

·Режим ХХ:

Рис.10. Схема Т-образного 4хП в режиме ХХ

Режим КЗ:

·Определим постоянные 4хП при ХХ и КЗ:

Если, то четырёхполюсник является симметричным, т.е. при перемене источника и приёмника местами, токи на входе и выходе четырёхполюсника не изменяются.

Для любого четырёхполюсника справедливо выражение AD-BC=1.

Проверим полученные при вычислении коэффициенты:

·Определим параметры П-образной схемы замещения 4хП:

Коэффициенты для П-образной схемы замещения пассивного четырёхполюсника вычисляются по следующим формулам:

Параметры схем замещения и постоянные четырёхполюсника связаны соответствующими формулами. Из них нетрудно найти сопротивления Т-образной и П-образной схем замещения и таким путем перейти от любой заданной схемы пассивного четырёхполюсника к одной из эквивалентных схем.

·Параметры Т-образной схемы можно найти через соответствующие коэффициенты:

·Параметры П-образной схемы:

3. Расчет линейной электрической цепи синусоидального тока с сосредоточенными параметрами при установившемся режиме

Исходные данные:

Часть 1

1.Определить показания всех приборов, указанных на схеме.

.Построить векторные диаграммы токов и напряжений.

.Написать мгновенные значения токов и напряжений.

.Определить для данной цепи индуктивность, при которой будет иметь место резонанс напряжений.

.Определить емкость, при которой в ветвях 3-4 наблюдается резонанс токов.

.Построить график изменения мощности и энергий, как функции времени, для ветвей 3-4, соответствующие резонансу токов.

Часть 2

1.Определить комплексы токов в ветвях и комплексы напряжений для всех ветвей цепи (рис. 14).

.Построить в комплексной плоскости векторную диаграмму напряжений и токов.

.Написать выражения мгновенных значений, найденных выше напряжений и токов.

.Определить комплексы мощностей всех ветвей.

.Определить показания ваттметров, измеряющих мощности в 3-ей и 4-ой ветвях.

Часть № 1

1. Определение показаний приборов

Для определения показаний приборов, преобразуем нашу цепь, представив активное и реактивное сопротивления в каждой ветви в виде общего сопротивления Zn:

·Найдем полные сопротивления соответствующих ветвей:

При параллельном соединении ветвей 2, 3 и 4 проводимость разветвления определяется как сумма проводимостей ветвей, поэтому необходимо по переходным формулам определить проводимость этих ветвей.

Найдем активные проводимости параллельной ветви:

Найдем реактивные проводимости параллельной ветви:

Найдем полные проводимости параллельной ветви:

Активная и реактивная проводимости разветвления:

При последовательном соединении левого (1) и правого (2,3,4) участков сопротивления всей цепи определяется как сумма сопротивлений участков, поэтому необходимо по переходным формулам вычислить активное и реактивное сопротивления правого участка:

Полное сопротивление правого участка равно:

Активное и реактивное сопротивление всей цепи:

Полное сопротивление всей цепи:

Ток всей цепи, а следовательно, ток неразветвленной части цепи равен:

Разность фаз напряжения и тока всей цепи

Напряжение левого участка цепи

Отдельно могут быть вычислены активная и реактивная составляющие напряжения

Проверка:

Разность фаз напряжения и тока левого участка

Напряжение правого участка цепи

Разность фаз напряжения и тока

Токи ветвей 2, 3 и 4 могут быть вычислены по напряжению и сопротивлению:

Отдельно могут быть вычислены активные и реактивные составляющие токов:

Знак минус указывает на емкостный характер реактивного тока.

Знак плюс указывает на индуктивный характер реактивного тока.

Проверка:

Разность фаз напряжения и токов:

Из выше приведенных вычислений, определим показания приборов:

Построение векторных диаграмм токов и напряжений

Произвольно направляем вектор напряжений всей цепи, под углом

к нему чертим вектор тока всей цепи: т.к. мы переходим от вектора напряжений к вектору тока, положительный угол откладывается против направления вращения векторов. Под углом к вектору тока откладываем вектор напряжения правого участка, под углом - вектор напряжения левого участка; так как переходим от вектора тока к векторам напряжений, положительные угл

откладываются по вращению векторов.

Под углом и к вектору напряжения (по вращению векторов) откладываем вектора токов второй и третьей ветви, под углом (против вращения векторов) - вектор тока четвертой ветви.

Проверкой правильности решения задачи и построения векторной диаграммы служат геометрические суммы векторов напряжения и и векторов токов, которые должны дать соответственно векторы напряжения и тока всей цепи.

Мгновенные значения токов и напряжений.

·Вычислим соответствующие амплитуды токов и напряжений:

Составление баланса активной и реактивной мощности.

Для проверки расчёта тока в ветвях, составим баланс мощностей для схемы

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.:

Баланс соблюдается и для реактивных мощностей:

т.е. баланс активной мощности соблюдается.

т.е. баланс реактивной мощности соблюдается.

Резонанс напряжений

Резонанс напряжений возникает в цепи с последовательным соединением индуктивного и емкостного элемента.

Рис.3. Эл.цепь при резонансе напряжений

Резонанс токов.

Часть № 2.

1. Определение комплексов токов в ветвях и комплексов напряжений для всех ветвей цепи.

Вычислим комплекс полного сопротивления параллельного разветвления

Комплекс полного сопротивления всей цепи

Так как перед мнимой частью стоит положительный знак, можно утверждать, что цепь имеет индуктивный характер.

Дальнейший расчет будет заключаться в определении комплексов напряжений и токов всех ветвей цепи, исходя из комплекса заданного напряжения всей цепи. Очевидно, проще всего направить вектор этого напряжения по вещественной оси; причем комплекс напряжения будет вещественным числом.

Тогда комплекс тока всей цепи, а следовательно, тока разветвленной части

Модуль (абсолютное значение) тока

Комплексы напряжений левого и правого участков цепи:

Проверка:

Вычислим комплексы токов параллельных ветвей 2, 3 и 4:

Проверка:

Построить в комплексной плоскости векторную диаграмму напряжении и токов

Рис 22. Векторная диаграмма напряжений и токов в комплексной плоскости

Написать выражения мгновенных значений найденных выше напряжений и токов

1. Определить комплексы мощностей всех ветвей

Следовательно, активная P, реактивная Q и полная S мощности соответственно равны:,

Плюс перед мнимой частью указывает на индуктивный характер реактивной мощности.

Проверка:

Определить показания ваттметров, измеряющих мощность в 3-ей и 4-ой ветвях

Вывод

электрический цепь ток

В курсовой работе рассмотрены методы расчёта линейных электрических цепей постоянного тока, определения параметров четырёхполюсника различных схем и их свойства. Так же был произведён расчет электрической цепи синусоидального тока сосредоточенными параметрами при установившемся режиме.

Список литературы

1.Методические указания к курсовой работе по расчёту линейных электрических цепей постоянного тока. В.М. Ишимов, В.И. Чукита, г. Тирасполь 2013 г.

Теоретические основы электротехники В. Г. Мацевитый, г. Харьков 1970

Теоретические основы электротехники. Евдокимов А.М. 1982г.

§ 1.1. Электромагнитное поле как вид материи.

Под электромагнитным полем понимают вид материи, характеризующийся совокупностью взаимосвязанных и взаимообусловливающих друг друга электрического и магнитного полей. Электромагнитное поле может существовать при отсутствии другого вида материи - вещества, характеризуется непрерывным распределением в пространстве (электромагнитная волна в вакууме) и может проявлять дискретную структуру (фотоны). В вакууме поле распространяется со скоростью света, полю присущи характерные для него электрические и магнитные свойства, доступные наблюдению.

Электромагнитное поле оказывает силовое воздействие на электрические заряды. Силовое воздействие положено в основу определения двух векторных величин, описывающих поле: напряженности электрического поля и индукции магнитного поля На заряд (Кл), движущийся со скоростью v в электрическом поле напряженности Е и магнитном поле индукции В, действует сила Лоренца

Электромагнитное поле обладает энергией, массой и количеством движения, т. е. такими же атрибутами, что и вещество. Энергия в единице объема, занятого полем в вакууме, равна сумме энергий электрической и магнитной компонент поля и равна здесь - электрическая постоянная, - магнитная постоянная, Гн/м. Масса электромагнитного поля в единице объема равна частному от деления энергии поля на квадрат скорости распространения электромагнитной волны в вакууме, равной скорости света.

Несмотря на малое значение массы поля по сравнению с массой вещества, наличие массы поля указывает на то, что процессы в поле являются процессами инерционными. Количество движения единицы объема электромагнитного поля определяется произведением массы единицы объема поля на скорость распространения электромагнитной волны в вакууме.

Электрическое и магнитное поля могут быть изменяющимися и неизменными во времени. Неизменным в макроскопическом смысле электрическим полем является электростатическое поле, созданное совокупностью зарядов, неподвижных в пространстве и неизменных во времени. В этом случае существует электрическое поле, а магнитное отсутствует. При протекании постоянных токов по проводящим телам внутри и вне их существует электрическое и магнитное поля, не влияющие друг на друга, поэтому их можно рассматривать раздельно. В изменяющемся во времени поле электрическое и магнитное поля, как упоминалось, взаимосвязаны и обусловливают друг друга, поэтому их нельзя рассматривать раздельно.

Теоретические

Основы электротехники

Линейные электрические цепи постоянного тока

Методические указания к выполнению

расчётно – графической работы №1

для студентов специальности 140604“Электропривод и автоматика промышленных установок и технологических комплексов”

(направление 140600 – ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОМЕХАНИКА

и ЭЛЕКТРОТЕХНОЛОГИИ)

Красноярск 2008

Теоретические основы электротехники. Линейные электрические цепи постоянного тока. Методические указания к выполнению расчётно – графической работы № 1 для студентов специальности 140604 “Электропривод и автоматика промышленных установок и технологических комплексов” (направление 140600 – ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОМЕХАНИКА и ЭЛЕКТРОТЕХНОЛОГИИ)

Рассмотрен анализ линейных электрических цепей методами контурных токов, узловых потенциалов и методом эквивалентного генератора. Приведены примеры расчётов.

Составитель В.В. Кибардин – к.т.н., доц. каф. ЭГМП

Методические указания утверждены на заседании кафедры ЭГМП.

ВВЕДЕНИЕ

Данная работа оказывает помощь студентам, изучающим дисциплину «Теоретические основы электротехники», помогает усвоению раздела «Свойства и методы расчета линейных цепей с источниками постоянного напряжения и тока». Приведены теоретические сведения и примеры расчётов цепей постоянного тока.

Методические указания предназначены для студентов специальности 140604 всех форм обучения.

1. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ТИПОВЫХ РАСЧЁТОВ

В соответствии с ГОСТ 1494-77 “Электротехника”, стандартом предприятия СТП-КИЦМ-4-82, правилами, принятыми в электротехнике, пояснительная записка пишется на одной стороне стандартных листов формата А4 (297*210). Она должна содержать: титульный лист по принятому образцу; задание с исходными данными; текстовый материал и таблицу соответствия переменных задания и машинных переменных; результаты решения; графический материал. Схемы и потенциальные диаграммы необходимо выполнять с применением чертёжных принадлежностей, изображая элементы схем в соответствии с ГОСТом.

2. РАСЧЁТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

С ИСТОЧНИКАМИ ПОСТОЯННЫХ ЭДС И ТОКОВ

Основной задачей расчета электрических цепей является определение токов, напряжений и мощностей ветвей цепи по заданным их сопротивлениям R, проводимостям G и источникам электрической энергии E или J. Эти задачи имеют единственное решение, которое для линейных цепей может быть получено составлением и решением системы алгебраических уравнений с учётом законов Кирхгофа, Ома и Джоуля-Ленца. В общем случае имеем 2b линейно независимых уравнений, если цепь содержит b ветвей и q узлов. Иногда в рассматриваемой цепи имеется b ИТ ветвей, в которых содержатся идеализированные источники тока J , и b ИН ветвей, составленных только из идеализированных источников напряжения E , поэтому общее число неизвестных напряжений и токов уменьшается до


2b – b ИТ – b ИН.

На практике для анализа цепей применяют различные методы составления уравнений электрического равновесия, позволяющие уменьшить размерность исходной системы уравнений.

2.1. Анализ цепей по законам Кирхгофа

Методы формирования уравнений электрического равновесия цепи, основанные на непосредственном применении законов Кирхгофа, позволяют уменьшить число одновременно решаемых уравнений до b.

Первый закон Кирхгофа формулируется следующим образом: алгебраическая сумма токов ветвей, соединенных в узле, равна нулю

где с положительным знаком учитываются токи, направленные от узла.

Второй закон Кирхгофа: алгебраическая сумма напряжений на ветвях любого контура равна нулю

или в любом контуре алгебраическая сумма э.д.с. равна алгебраической сумме напряжений на сопротивлениях, входящих в этот контур

ΣRkIk = Ek , (3)

В этом уравнении положительные знаки принимаются для токов и э.д.с. , положительные направления которых совпадают с произвольно выбранным направлением обхода рассматриваемого контура.

При составлении уравнений по законам Кирхгофа рекомендуется придерживаться такой последовательности: сначала выполнить эквивалентные преобразования, выбрать произвольные положительные направления токов во всех ветвях электрической цепи, затем составить q – 1 уравнение на основании первого закона Кирхгофа и, наконец, составить

b – (q – 1) уравнения для контуров на основании второго закона Кирхгофа.

Получить независимые уравнения по первому и второму законам Кирхгофа, т.е. выбрать независимую систему сечений и контуров, можно при помощи дерева графа схемы, содержащего все узлы графа, но ни одного контура, и ветвей связи, дополняющих дерево до исходного графа.

Если граф содержит b ветвей и q узлов, то число ветвей дерева

d = q- 1 , а число ветвей связи k = b - (q-1). Для дерева образуется d главных сечений, каждое из которых состоит из ветвей связи и одной ветви дерева, и k главных контуров, каждый из которых состоит из ветвей дерева и только одной ветви связи. Уравнения, составленные по законам Кирхгофа для главных сечений и главных контуров, линейно независимы.

Следует помнить, что на графе электрической цепи ветви, содержащие идеальные источники тока, не показываются.

Например, для сложной электрической цепи (рис. 1) её граф представлен на рис. 2. Он содержит пять ветвей, следовательно необходимо записать пять уравнений: из них два на основании первого закона Кирхгофа (q – 1 = 3 – 1 = 2), остальные – на основании второго закона Кирхгофа.

Исходная система уравнений запишется в виде

Электромагнитное устройство с осуществляемыми в нем, а также в окружающем его пространстве физическими процессами, в теории электрических цепей заменяет определенный расчетный эквивалент, называемый электроцепью.

Электромагнитные процессы в такой цепи описываются понятиями «ток», «ЭДС», «напряжение», «индуктивность», «емкость» и «сопротивление». Электрическая цепь существует при этом в двух вариантах:

  • линейная:
  • нелинейная.

Линейная электрическая цепь

Электрические цепи с постоянными параметрами считаются в физике такими цепями, в которых сопротивления резисторов $R$, индуктивность катушек $L$ и емкость конденсаторов $С$ будут постоянными и не зависимы от действующих в цепи напряжений, токов и напряжений (линейные элементы).

При условии независимости сопротивления резистора $R$ от тока, линейная зависимость между током и падением напряжения выражается на основании закона Ома, то есть:

Вольтамперная характеристика резистора при этом представляет собой прямую линию.

При независимости индуктивности катушки от величины тока, протекающего в ней, потокосцепление самоиндукции катушки $ф$ оказывается прямо пропорциональным этому току:

При условии независимости емкости конденсатора С от приложенного к обкладкам напряжения $uc$, накопленный на пластинах заряд $q$ и напряжение $uc$ оказываются связанными между собой через линейную зависимость.

При этом линейность сопротивления, индуктивности, а также емкости носит сугубо условный характер поскольку в действительности все реальные элементы электроцепи не линейны. При прохождении через резистор тока он будет нагреваться с изменением сопротивления.

При этом в нормальном рабочем режиме элементов подобные изменения обычно настолько несущественны, что при расчетах не берутся во внимание (такие элементы считаются в электрической цепи линейными).

Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств.

Определение 1

Электрическая цепь, которая будет состоять из линейных элементов, называется линейной. Такие цепи характеризуют линейные уравнения для токов и напряжений и заменяются линейными схемами замещения.

Нелинейная электрическая цепь

Определение 2

Нелинейной электрической цепью считается та, которая содержит один или несколько нелинейных элементов.

Нелинейный элемент в электроцепи имеет параметры, зависимые от определяющих их величин. Нелинейная электрическая цепь имеет ряд важных отличий от линейной и в ней зачастую возникают специфические явления.

Нелинейные элементы характеризуют статические $R_{ст}$, $L_{ст}$, и $C_{ст}$ и дифференциальные $(R_д, L_д, C_д)$ параметры. Статические параметры нелинейного элемента определяются в виде отношения ординаты избранной точки характеристики к ее абсциссе:

$F_{ст} = \frac{yA}{YX}$

Дифференциальные параметры нелинейного элемента определяются в форме отношения малого приращения ординаты выбранной точки характеристики к малому приращению ее абсциссы:

$F{диф} = \frac{dy}{B}$

Методы расчета нелинейных цепей

Нелинейность параметров элементов усложняется расчетом цепи, поэтому рабочим участком выбирается или линейный, или близкий к нему участок характеристики. При этом рассматривается с допустимой точностью элемент как линейный. При невозможности этого применяются специальные методы расчета, такие, как:

  • графический метод;
  • метод аппроксимации.

Идея графического метода ориентирована на построение характеристик элементов цепи (вольт–амперной $u(i)$, вебер–амперной $ф(i)$ или кулон–вольтной $q(u)$) и их последующем графическом преобразовании с целью получения соответствующей характеристики для всей цепи или какого-то из ее участков.

Графический метод расчета считается наиболее простым и наглядным в использовании, обеспечивающим необходимую точность. В то же время, его применяют при незначительном количестве нелинейных элементов в цепи, поскольку он требует максимальной аккуратности при проведении графических построений.

Идея метода аппроксимации направлена на замену аналитическим выражением экспериментально полученной характеристики нелинейного элемента. Различают такие виды:

  • аналитическая аппроксимация (при которой характеристика элемента заменяется на аналитическую функцию);
  • кусочно–линейная (при ней характеристика элемента заменяется комплексом прямолинейных отрезков).

Точность аналитической аппроксимации определяет правильность выбора аппроксимирующей функции и подбор соответствующих коэффициентов. Преимуществом кусочно–линейной аппроксимации выступает простота при применении и возможность рассматривать элемент в формате линейного.

Более того, в ограниченном диапазоне изменений сигнала, где его, благодаря трансформациям, можно считать линейным (режим малого сигнала), нелинейный элемент (с допустимой точностью) можно заменить эквивалентным линейным активным двухполюсником:

$U = E + R_{диф} I$,

где $R_{диф}$ –дифференциальное сопротивление нелинейного элемента на линеаризуемом участке.